积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(6)ClickHouse(6)

语言

全部中文(简体)(6)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.010 秒,为您找到相关结果约 6 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 2. ClickHouse MergeTree原理解析-朱凯

    Tree)最 为强大,在生产环境绝大部分场景中都应该使用此系列的表引擎。 只有合并树系列的表引擎才支持主键索引、数据分区、数据副本和数据采样这些特 性,同时也只有此系列的表引擎支持ALTER相关操作。 合并树家族 其中MergeTree作为家族中最基础的表引擎,提供了主键索引、数据分区、数据副 本和数据采样等所有的基本能力,而家族中其他的表引擎则在MergeTree的基础之 上各有所长。 作为分区 ID的取值。 l 使用其它类型 如果分区键取值既不属于整型,也不属于日期 类型,例如String、Float等。则通过128位Hash 算法取其Hash值作为分区ID的取值。 分区目录的命名规则 PartitionID_MinBlockNum_MaxBlockNum_Level • PartitionID 分区ID,无需多说,对于分区ID的规则在上一小节中已 经做过了详细的阐述。 ,那么计数n在单张MergeTree数据表内全局累加,n从1 开始,每当新创建一个分区目录时,计数n就会累积加1 。对于一个新的分区目录而言,MinBlockNum与 MaxBlockNum取值一样,同等于n。 • Level 合并的层级,可以理解为某个分区被合并过的次数。 Level计数与BlockNum有所不同,它并不是全局累加的。 对于每一个新创建的分区目录而言,其初始值均为0。之 后,以分区为单位,如果相同分区发生合并动作,则在相
    0 码力 | 35 页 | 13.25 MB | 1 年前
    3
  • pdf文档 ClickHouse在B站海量数据场景的落地实践

    ClickHouse在B站海量数据场景的落地实践 胡甫旺 哔哩哔哩OLAP平台 目录 vClickHouse在B站 v内核 v日志 v用户行为数据分析 vFuture Work vQ&A ClickHouse在B站 B站ClickHouse应用概况 v 近400个节点,30个集群 v ⽇均1.5+万亿条数据摄⼊ v ⽇均800+万次Select请求 v 应⽤场景包括(不限于): 基于中间存储的Bulkload受HDFS和⽹络稳定性影响,且传输成本较⾼ v 直达ClickHouse的Bulkload稳定性,性能都更佳 Unique Engine v ⽬标:⽀持UpSert,Delete操作,提升查询性能 v 设计:delete on insert Unique Engine v write-write冲突依靠table level lock控制 v write-merge冲突:
    0 码力 | 26 页 | 2.15 MB | 1 年前
    3
  • pdf文档 2. Clickhouse玩转每天千亿数据-趣头条

    1:内存限制,对于一些大的查询会出现内存不够问题 2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 解决: 1:机器的内存推荐128G+ 2:采用软连接的方式,把不同的表分布到不同的盘上面,这样一台机器可以挂载更多的盘 最新版本的”冷热数据分离”特性,曲线救国 inserts. 分析: 1:直接落盘,异步merge - background_pool_size 2:一个Insert Request,涉及N个分区的数据,在磁盘上就会生成N个数据目录,merge跟不上 3:一个目录,一个zxid,zookeeper集群的压力大,插入速度严重变慢 解决: 1:增大background_pool_size治标不治本 2:设置分区的时候需要思考,数据的特性需要了解
    0 码力 | 14 页 | 1.10 MB | 1 年前
    3
  • pdf文档 4. ClickHouse在苏宁用户画像场景的实践

    Hive、ElasticSearch、Kylin、Druid、InfluxDB等, 详见:http://roaringbitmap.org/ 通过单个bitmap可以完成精确去重操作,通过多个bitmap的and、or、xor、andnot等位 操作完成留存分析、漏斗分析、用户画像分析等场景的计算。 00101110 00100001 00100000 …… Byte[0] Byte[1] Byte[2] 就要到了,需要发放10万张家电类优惠券迚行促销: 预估人数 人群画像 用户ID清单 用户画像场景1—预估人数 输入条件 返回结果 场景描述 场景:限量发放10万张家电类优惠券,先预估出符合条件的用户数。 操作:用户指定标签及标签间的逡辑关系,统计出符合标签逡辑的人数。 标签表达式,包含标签、算术运算符、逡辑运算符、括号。 整形值,表示符合标签表达式的用户人数 例如: 23 user_number 场景:对选出符合发优惠券条件的用户迚行画像分析,人群特征分析。 操作:用户指定标签及标签间的逡辑关系,查询出符合标签逡辑的用户ID数据集,然后对数 据集迚行用户画像分析。一条SQL完成人群圈选、用户画像两个劢作。 标签逡辑表达式,包含标签、算术运算符、逡辑运算符、括号。 查询出符合标签表达式的用户ID Bitmap对象, 然后将Bitmap对象不画像表迚行不(AND)操作,返回用户画像信息。 例如: label_name
    0 码力 | 32 页 | 1.47 MB | 1 年前
    3
  • pdf文档 3. 数仓ClickHouse多维分析应用实践-朱元

    clickhouse数仓应用实践 演讲人:朱元 日期: 2019-10-20 所遇问题 目录 CONTENTS 现状背景 应用实践 01 数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维
    0 码力 | 14 页 | 3.03 MB | 1 年前
    3
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    ClickHouse 应用实践 丁晓坤 & 熊峰 一切以用户价值为依归 2 • Clickhouse 的部署与监控管理 • Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
共 6 条
  • 1
前往
页
相关搜索词
ClickHouseMergeTree原理解析朱凯海量数据场景落地实践Clickhouse玩转每天千亿头条苏宁用户画像数仓多维分析多维分析应用朱元腾讯clickhouse2019丁晓坤熊峰
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩