8. Continue to use ClickHouse as TSDBchoose it 不断的汇总日成交量从 而制定商业规划 Why we choose it 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 Why we choose it 不断收集CPU、 Memory等系统指标预 测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 Why we choose it 不断收集CPU、 不断收集CPU、 Memory等系统指标预 测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 不断收集温度,坐标,方向 ,速度等指标,优化路线和 驾驶方式 ► 上述业务数据特点: ► (1) 数据多 ► (2) 旧数据趋于不变 ► (3) 新数据更有价值 ► (4) 数据总是随时间变化而不断变化 Why we choose it ► 解决方案 • 引入辅助索引,加快数据检索 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法 • 通过 Rollup 功能,对历史数据做聚合,减少数据量 稳定可扩展 • 分布式架构 • 数据多副本存储 • 服务高可用 Thanks For You0 码力 | 42 页 | 911.10 KB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎减少数据中文本信息的冗余存储; • 特别适用于数据量大,查询频次可控的场景,如数据分析,埋点日志系统; 全球敏捷运维峰会 广州站 StarRocks应用小结 • 发挥分布式的优势,要提前做好分区字段规划; • 支持各种join,语法会相对clickhouse简单很多; • 一个sql可以多处用; • 建立好守护进程以及节点监控; 全球敏捷运维峰会 广州站 THANK YOU!0 码力 | 15 页 | 1.33 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条1:zookeeper机器的snapshot文件和log文件最好分盘存储(推荐SSD)提高ZK的响应 2:zookeeper的snapshot文件存储盘不低于1T 3:做好zookeeper集群和clickhouse集群的规划,可以多套zookeeper集群服务一套clickhouse集群 3.1:zookeeper集群的znode最好能在400w以下(这个时候snapshot文件到达2G+) 3.2:注意监控zookeeper的指标(排队请求0 码力 | 14 页 | 1.10 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰iData画像服务需要升级 Ø扩展性差 数据导入后结果不支持修改/追加 Ø数据类型有限 数据类型只能支持数字类型 Ø数据量有限 数据量达到10亿级以上查询效率有所降低 Ø单表计算 不能进行多表关联计算 一切以用户价值为依归 21 业务应用实践 iData 2 为什么选择ClickHouse • SQL • OLAP • 超高性能 • 列式存储 • 统计函数 • 线性扩展 • 驱动丰富0 码力 | 26 页 | 3.58 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践Value Bitmap Container 0 1 1 0 ① ② ③ ④ ClickHouse集成RoaringBitmap Bitmap字段类型,该类型扩展自AggregateFunction类型,字段类型定义: AggregateFunction( groupBitmap, UInt(8|16|32|64)) 参考: https://clickhouse0 码力 | 32 页 | 1.47 MB | 1 年前3
共 5 条
- 1













