ClickHouse在B站海量数据场景的落地实践原⽣写⼊⽅式消耗ClickHouse Server资源,影响查询性能 v 实时写⼊任务长期占⽤资源,故障恢复的时间和运维成本较⾼ v 基于中间存储的Bulkload⽅案降低ClickHouse Server压⼒ Bulkload v 基于中间存储的Bulkload可以降低ClickHouse Server压⼒ v 基于中间存储的Bulkload受HDFS和⽹络稳定性影响,且传输成本较⾼ v 直达Click0 码力 | 26 页 | 2.15 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条问题: 1:内存限制,对于一些大的查询会出现内存不够问题 2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 解决: 1:机器的内存推荐128G+ 2:采用软连接的方式,把不同的表分布到不同的盘上面,这样一台机器可以挂载更多的盘0 码力 | 14 页 | 1.10 MB | 1 年前3
共 2 条
- 1













