2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰• Clickhouse 的部署与监控管理 • Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归 5 部署与监控管理 1 生产环境部署方案: Distributed Shard02 Shard03 Load Balancing 一切以用户价值为依归 6 部署与监控管理 1 线性平滑扩容: 扩容: 1.安装新部署新的shard分片机器 2.新shard上创建表结构 3.批量修改当前集群的配置文件增加新的分片 4.名字服务添加节点 一切以用户价值为依归 7 部署与监控管理 1 大批量,少批次 WriteModel BatchSize RowLengt 413 NO 一切以用户价值为依归 8 部署与监控管理 1 应用监控-业务指标: 一切以用户价值为依归 9 部署与监控管理 1 服务监控-错误日志: 一切以用户价值为依归 10 部署与监控管理 1 服务监控-请求指标: 一切以用户价值为依归 11 部署与监控管理 1 服务监控-扫描详情: 一切以用户价值为依归 12 部署与监控管理 1 服务监控-响应耗时: 一切以用户价值为依归0 码力 | 26 页 | 3.58 MB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎全球敏捷运维峰会 广州站 StarRocks的特点 优点: 1. 支持标准的SQL语法,兼容MySql协议; 2. MPP架构,扩缩容非常简单方便; 3. 支持高并发查询; 4. 跨机房部署,实现最低成本的DR 缺点: 1. 不支持大规模的批处理; 2. 支持insert into,但最理想的是消费Kafka; 全球敏捷运维峰会 广州站 ClickHouse/StarRocks在酒店数据智能平台的架构 全球敏捷运维峰会 广州站 ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 system.query_log表,记录已经0 码力 | 15 页 | 1.33 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条部分复杂累时查询30S内完成 集群现状 我们遇到的问题 关于机器的配置 早期集群机器配置16核64G 一块1.7T本地SSD 问题: 1:内存限制,对于一些大的查询会出现内存不够问题 2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 1:zookeeper机器的snapshot文件和log文件最好分盘存储(推荐SSD)提高ZK的响应 2:zookeeper的snapshot文件存储盘不低于1T 3:做好zookeeper集群和clickhouse集群的规划,可以多套zookeeper集群服务一套clickhouse集群 3.1:zookeeper集群的znode最好能在400w以下(这个时候snapshot文件到达2G+) 3.2:注意监控zookeeper的指标(排队请求0 码力 | 14 页 | 1.10 MB | 1 年前3
8. Continue to use ClickHouse as TSDB测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 不断收集温度,坐标,方向 ,速度等指标,优化路线和 驾驶方式 ► 上述业务数据特点: ► (1) 数据多 ► (2) 旧数据趋于不变 ► (3) 新数据更有价值 ► (4) 数据总是随时间变化而不断变化 Why we choose it ► 解决方案 ► (1) Row-Orient Database 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法 • 通过 Rollup 功能,对历史数据做聚合,减少数据量 稳定可扩展 • 分布式架构 • 数据多副本存储 • 服务高可用 Thanks For You0 码力 | 42 页 | 911.10 KB | 1 年前3
3. 数仓ClickHouse多维分析应用实践-朱元主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表 封装成一个视图,类 似如下 数 据 展 示 + 多 维 分析 采用开源报表系统davinci 地址: https://github.com/edp963/davinci 03 1. Memory limit (for query) exceeded0 码力 | 14 页 | 3.03 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践write-write冲突依靠table level lock控制 v write-merge冲突: Unique Engine v 常驻内存模式对内存消耗很⼤ v ⾮常驻内存模式index load过程慢 v 多并发加载优化索引加载速度: 日志 日志 v Elastic To ClickHouse迁移,降本增效 v OTEL标准化⽇志采集 v 统⼀scheme⽀持 日志 v ClickHouse较ES写⼊吞吐量提升近10倍0 码力 | 26 页 | 2.15 MB | 1 年前3
6. ClickHouse在众安的实践数据/模型生命周期管理 资源调度 业务系统 开 发 工 具 基 础 设 施 模型 反馈 智能应用 开放与敏捷 • 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • 追溯数据血缘,数据、算法模型版本管理0 码力 | 28 页 | 4.00 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯直接生成下一个压缩数据块。 l 单个批次数据 size > 1M 如果单个批次数据直接超过1M,则首先按照1M 大小截断并生成下一个压缩数据块。剩余数据继续依 照上述规则执行。此时,会出现一个批次数据生成多 个压缩数据块的情况。 每个压缩数据块的体积,按照其压缩前的数据字节大小,都被严格的控制在64K~1M之间,其上下限分 别由min_compress_block_size(默认65536)与max_0 码力 | 35 页 | 13.25 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践特性发布快 3. 软件质量高 4. 物化视图 5. 高基数查询 6. 精确去重计数(count distinct) 3 精确去重计数性能测试 4亿多的数据集上,去重计算出6千万整形数值, 非精确去重函数:uniq、uniqHLL12、uniqCombined 精确去重函数:uniqExact、groupBitmap 函数 时长(秒)0 码力 | 32 页 | 1.47 MB | 1 年前3
共 9 条
- 1













