积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(9)ClickHouse(9)

语言

全部中文(简体)(8)英语(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.010 秒,为您找到相关结果约 9 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎

    构建支撑千亿级数据量的高可用查询引擎 演讲人:蔡岳毅 全球敏捷运维峰会 广州站 1. 为什么选择ClickHouse/StarRocks; 2. ClickHouse/StarRocks的高可用架构; 3. 如何合理的应用ClickHouse的优点,StarRocks 如何来补充ClickHouse 的短板; 4. ClickHouse的调优,运维介绍; 5. 应用总结; 全球敏捷运维峰会 2. 支持常用的SQL语法,写入速度非常快,适用于大量的数据更新; 3. 依赖稀疏索引,列式存储,cpu/内存的充分利用造就了优秀的计算能力, 并且不用考虑左侧原则; 缺点: 1. 不支持事务,没有真正的update/delete; 2. 不支持高并发,可以根据实际情况修改qps相关配置文件; 全球敏捷运维峰会 广州站 StarRocks的特点 优点: 1. 支持标准的SQL语法,兼容MySql协议; 支持标准的SQL语法,兼容MySql协议; 2. MPP架构,扩缩容非常简单方便; 3. 支持高并发查询; 4. 跨机房部署,实现最低成本的DR 缺点: 1. 不支持大规模的批处理; 2. 支持insert into,但最理想的是消费Kafka; 全球敏捷运维峰会 广州站 ClickHouse/StarRocks在酒店数据智能平台的架构 全球敏捷运维峰会 广州站 ClickHouse的全量数据同步流程
    0 码力 | 15 页 | 1.33 MB | 1 年前
    3
  • pdf文档 4. ClickHouse在苏宁用户画像场景的实践

    苏宁科技集团.大数据中心.杨兆辉 1 关亍我  苏宁科技集团大数据中心架构师  曾就职亍中兴通讯10+years ,从事大规模分布式系统研发  10+years C++、Java、Go编程经验,熟悉大数据架构、解决方案  ClickHouse Contributor  Github: https://github 特性发布快 3. 软件质量高 4. 物化视图 5. 高基数查询 6. 精确去重计数(count distinct) 3 精确去重计数性能测试 4亿多的数据集上,去重计算出6千万整形数值, 非精确去重函数:uniq、uniqHLL12、uniqCombined 精确去重函数:uniqExact、groupBitmap 函数 时长(秒) 30 40 50 60 时长 结论: • 整形值精确去重场景,groupBitmap 比 uniqExact至少快 2x+ • groupBitmap仅支持整形值去重, uniqExact支持任意类型去重。 • 非精确去重场景,uniq在精准度上有优势。 5 0.25 0.46 0.29 0 0 0 0.05 0.1 0.15
    0 码力 | 32 页 | 1.47 MB | 1 年前
    3
  • pdf文档 2. ClickHouse MergeTree原理解析-朱凯

    ClickHouse MergeTree原理解析 朱凯@深圳 2019.10 朱 凯 远光软件 大数据事业部/平台开发部 总经理 资深架构师,腾讯云TVP专家 10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 3 这众多的表引擎中,又属合并树(MergeTree)表引擎及其家族系列(*MergeTree)最 为强大,在生产环境绝大部分场景中都应该使用此系列的表引擎。 只有合并树系列的表引擎才支持主键索引、数据分区、数据副本和数据采样这些特 性,同时也只有此系列的表引擎支持ALTER相关操作。 合并树家族 其中MergeTree作为家族中最基础的表引擎,提供了主键索引、数据分区、数据副 本和数据采样等所有的基本能力,而家族 WHERE ID LIKE 'A006%' ['A006', 'A007') 2. 递归交集判断 3. 合并MarkRange区间 索引的查询过程 二级索引 跳数索引 目前,MergeTree共支持4种跳数索引,分别是minmax、set和ngrambf_v1和tokenbf_v1。 数据存储 按列存储,精心编排,错落有致 压缩数据块,就好比是一本书的文字段落,是组织文字的基本单元。 压缩数据块
    0 码力 | 35 页 | 13.25 MB | 1 年前
    3
  • pdf文档 6. ClickHouse在众安的实践

    垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • 追溯数据血缘,数据、算法模型版本管理 • 支持算法模型结果的可重现、可审计 • 缓解AI/机器学习带来的潜在伦理与法律担忧 全生命周期管理 追溯与可重现 洞察平台架构 Why Clickhouse Clickhouse? Clickhosue 性能 高效的数据导入和查询性能 开源 低成本,免费 压缩比 高度的数据压缩比,存储成本更小 面向列 真正的面向列存储, 支持高维度表 易观开源OLAP引擎测评报告 洞察数据模型+Clickhouse 使用效果 CHAPTER 使用ck对百亿数据的探索 03 背景 我们希望对保单、用户数据进行灵活分析,根据用户标签筛选出符合 要求的客户进行精准营销。 原有导入数据方式在百亿级数据下会报Too many partitions for single INSERT block的问题 • 数据导入慢 原因: • ck-loader-mr方式对大数据量场景支持不够友好 • 单次插入分区过多 解决方法: 使用clickhouse原生insert format csv 配合linux pipline导入 hadoop fs -cat 'hdfs:
    0 码力 | 28 页 | 4.00 MB | 1 年前
    3
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    Analysis 数据报表 多 维 聚 合 iData大数据分析引擎 TGMars TGSpark & Storage 大数据仓库 Hadoop Data Lake 计算引擎 MR & Spark Data Warehouse OLTP Big Data Analysis 多 维 聚 合 iData New 超融合OLAP 大数据分析 引擎TGMars 多 维 提 取 关 联 Block 1 Block 2 Block … DataNode-3 DataNode-1 指标计算平台 Ø 分布式计算 • 并行计算 Ø 列式存储 • 按需加载减少IO • 可支持大量列 Ø 动态位图索引 • 缓存上次结果 • 成本低、命中率高 核心特点 Bitmap Filter Builder Dynamic Bitmap Index Cache Bitmap Data Extract Data Representation 20 业务应用实践 iData 2 iData画像服务需要升级 Ø扩展性差 数据导入后结果不支持修改/追加 Ø数据类型有限 数据类型只能支持数字类型 Ø数据量有限 数据量达到10亿级以上查询效率有所降低 Ø单表计算 不能进行多表关联计算 一切以用户价值为依归 21 业务应用实践 iData 2 为什么选择ClickHouse
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
  • pdf文档 8. Continue to use ClickHouse as TSDB

    测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 不断收集温度,坐标,方向 ,速度等指标,优化路线和 驾驶方式 ► 上述业务数据特点: ► (1) 数据多 ► (2) 旧数据趋于不变 ► (3) 新数据更有价值 ► (4) 数据总是随时间变化而不断变化 Why we choose it ► 解决方案 ► (1) Row-Orient Database 引入辅助索引,加快数据检索 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法 • 通过 Rollup 功能,对历史数据做聚合,减少数据量 稳定可扩展 • 分布式架构 • 数据多副本存储 • 服务高可用 Thanks For You
    0 码力 | 42 页 | 911.10 KB | 1 年前
    3
  • pdf文档 3. 数仓ClickHouse多维分析应用实践-朱元

    演讲人:朱元 日期: 2019-10-20 所遇问题 目录 CONTENTS 现状背景 应用实践 01 数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维度信息以及相关主题清单数据同步至clichouse数据 主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表 封装成一个视图,类 似如下 数 据 展 示 + 多 维 分析 采用开源报表系统davinci 地址: https://github.com/edp963/davinci 03 1. Memory limit (for query) exceeded
    0 码力 | 14 页 | 3.03 MB | 1 年前
    3
  • pdf文档 ClickHouse在B站海量数据场景的落地实践

    ⼴告DMP(包括统计分析,⼈群预估) Ø 电商交易分析 Ø OGV内容分析 Ø APM (Application Performance Management) 基于ClickHouse的交互式OLAP技术架构 Cluster-01 Cluster-02 Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP write-write冲突依靠table level lock控制 v write-merge冲突: Unique Engine v 常驻内存模式对内存消耗很⼤ v ⾮常驻内存模式index load过程慢 v 多并发加载优化索引加载速度: 日志 日志 v Elastic To ClickHouse迁移,降本增效 v OTEL标准化⽇志采集 v 统⼀scheme⽀持 日志 v ClickHouse较ES写⼊吞吐量提升近10倍
    0 码力 | 26 页 | 2.15 MB | 1 年前
    3
  • pdf文档 2. Clickhouse玩转每天千亿数据-趣头条

    早期集群机器配置16核64G 一块1.7T本地SSD 问题: 1:内存限制,对于一些大的查询会出现内存不够问题 2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 解决: 1:机器的内存推荐128G+ 2:采用软连接 1:zookeeper机器的snapshot文件和log文件最好分盘存储(推荐SSD)提高ZK的响应 2:zookeeper的snapshot文件存储盘不低于1T 3:做好zookeeper集群和clickhouse集群的规划,可以多套zookeeper集群服务一套clickhouse集群 3.1:zookeeper集群的znode最好能在400w以下(这个时候snapshot文件到达2G+) 3.2:注意监控zookeeper的指标(排队请求
    0 码力 | 14 页 | 1.10 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
蔡岳毅基于ClickHouseStarRocks构建支撑千亿数据数据量可用查询引擎苏宁用户画像场景实践MergeTree原理解析朱凯众安腾讯clickhouse2019丁晓坤熊峰ContinuetouseasTSDB数仓多维分析多维分析应用朱元海量落地Clickhouse玩转每天头条
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩