 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰部署与监控管理 1 服务监控-响应耗时: 一切以用户价值为依归 13 部署与监控管理 1 立体监控模型: 监控分层 监控项 敏感度 紧急度 应用层 业务指标,数据异常 低 高 服务层 错误日志 中 中 请求指标 扫描详情 响应耗时 物理层 磁盘IO, 持续负载,流量 高 低 一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践0 码力 | 26 页 | 3.58 MB | 1 年前3 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰部署与监控管理 1 服务监控-响应耗时: 一切以用户价值为依归 13 部署与监控管理 1 立体监控模型: 监控分层 监控项 敏感度 紧急度 应用层 业务指标,数据异常 低 高 服务层 错误日志 中 中 请求指标 扫描详情 响应耗时 物理层 磁盘IO, 持续负载,流量 高 低 一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践0 码力 | 26 页 | 3.58 MB | 1 年前3
 4. ClickHouse在苏宁用户画像场景的实践Spark 用户画像平台 现有的流程:  ES中定义标签的大宽表  通过Spark关联各种业务数据,插入到ES大 宽表。  高频查询的画像数据通过后台任务保存到加 速层:Hbase 戒者 Redis  实时标签通过Flink计算,然后写入Redis  用户画像平台可以从ES、Hbase、Redis查 询数据 痛点:  标签导入到ES的时间过长,需要等待各种业0 码力 | 32 页 | 1.47 MB | 1 年前3 4. ClickHouse在苏宁用户画像场景的实践Spark 用户画像平台 现有的流程:  ES中定义标签的大宽表  通过Spark关联各种业务数据,插入到ES大 宽表。  高频查询的画像数据通过后台任务保存到加 速层:Hbase 戒者 Redis  实时标签通过Flink计算,然后写入Redis  用户画像平台可以从ES、Hbase、Redis查 询数据 痛点:  标签导入到ES的时间过长,需要等待各种业0 码力 | 32 页 | 1.47 MB | 1 年前3
共 2 条
- 1













