ClickHouse在B站海量数据场景的落地实践ClickHouse在B站海量数据场景的落地实践 胡甫旺 哔哩哔哩OLAP平台 目录 vClickHouse在B站 v内核 v日志 v用户行为数据分析 vFuture Work vQ&A ClickHouse在B站 B站ClickHouse应用概况 v 近400个节点,30个集群 v ⽇均1.5+万亿条数据摄⼊ v ⽇均800+万次Select请求 v 应⽤场景包括(不限于): ClickHouse 监控管理平 台 BSQL/Saber 实时写入服务 Rider 离线写入服务 平台服务 Berserker 数据源管理 交互式 分析查询 Yuuni服务 用户 内核 Map隐式列 v 原⽣Map使⽤Array of Tuple实现 v 原⽣Map查询时需读取⼤量⽆效数据 Map隐式列 v Map隐式列将每个Key存储为独⽴列 v Map隐式列查询时只读取需要的隐式列0 码力 | 26 页 | 2.15 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰部署与监控管理 1 服务监控-响应耗时: 一切以用户价值为依归 13 部署与监控管理 1 立体监控模型: 监控分层 监控项 敏感度 紧急度 应用层 业务指标,数据异常 低 高 服务层 错误日志 中 中 请求指标 扫描详情 响应耗时 物理层 磁盘IO, 持续负载,流量 高 低 一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践0 码力 | 26 页 | 3.58 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践Spark 用户画像平台 现有的流程: ES中定义标签的大宽表 通过Spark关联各种业务数据,插入到ES大 宽表。 高频查询的画像数据通过后台任务保存到加 速层:Hbase 戒者 Redis 实时标签通过Flink计算,然后写入Redis 用户画像平台可以从ES、Hbase、Redis查 询数据 痛点: 标签导入到ES的时间过长,需要等待各种业0 码力 | 32 页 | 1.47 MB | 1 年前3
共 3 条
- 1













