蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎2. 支持常用的SQL语法,写入速度非常快,适用于大量的数据更新; 3. 依赖稀疏索引,列式存储,cpu/内存的充分利用造就了优秀的计算能力, 并且不用考虑左侧原则; 缺点: 1. 不支持事务,没有真正的update/delete; 2. 不支持高并发,可以根据实际情况修改qps相关配置文件; 全球敏捷运维峰会 广州站 StarRocks的特点 优点: 1. 支持标准的SQL语法,兼容MySql协议;0 码力 | 15 页 | 1.33 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践⽬标:⽀持UpSert,Delete操作,提升查询性能 v 设计:delete on insert Unique Engine v write-write冲突依靠table level lock控制 v write-merge冲突: Unique Engine v 常驻内存模式对内存消耗很⼤ v ⾮常驻内存模式index load过程慢 v 多并发加载优化索引加载速度: 日志 日志0 码力 | 26 页 | 2.15 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践ch_label_dist_date 查询 分布式表 标签数据表 HDFS 导入 HDFS上采用snappy.parquet格式存储数据。 采用AB表切换方式,避免查询和写入的冲突,标签数据表以日期结尾命名。 通过重建分布式表迚行AB表切换,指向丌同日期的标签数据表。 通过增加标签数据表的副本数,提升幵发性能。 21 用户画像系统常见应用场景 220 码力 | 32 页 | 1.47 MB | 1 年前3
共 3 条
- 1













