积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(51)Python(51)Celery(51)

语言

全部英语(51)

格式

全部其他文档 其他(30)PDF文档 PDF(21)
 
本次搜索耗时 0.369 秒,为您找到相关结果约 51 个.
  • 全部
  • 后端开发
  • Python
  • Celery
  • 全部
  • 英语
  • 全部
  • 其他文档 其他
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 Celery v5.0.0 Documentation

    tasks import add >>> group(add.s(i, i) for i in range(10))().get() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] Partial group >>> g = group(add.s(i) for i in range(10)) >>> g(10).get() [10, 11, 12, 13, 14, 15, chord((add.s(i, i) for i in range(10)), xsum.s())().get() 90 A group chained to another task will be automatically converted to a chord: >>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get() 90 Chunking splits a long list of arguments into parts, for example the operation: >>> items = zip(range(1000), range(1000)) # 1000 items >>> add.chunks(items, 10) will split the list of items into chunks of
    0 码力 | 2309 页 | 2.13 MB | 1 年前
    3
  • epub文档 Celery v5.0.1 Documentation

    tasks import add >>> group(add.s(i, i) for i in range(10))().get() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] Partial group >>> g = group(add.s(i) for i in range(10)) >>> g(10).get() [10, 11, 12, 13, 14, 15, chord((add.s(i, i) for i in range(10)), xsum.s())().get() 90 A group chained to another task will be automatically converted to a chord: >>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get() 90 Chunking splits a long list of arguments into parts, for example the operation: >>> items = zip(range(1000), range(1000)) # 1000 items >>> add.chunks(items, 10) will split the list of items into chunks of
    0 码力 | 2313 页 | 2.13 MB | 1 年前
    3
  • epub文档 Celery v5.0.2 Documentation

    tasks import add >>> group(add.s(i, i) for i in range(10))().get() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] Partial group >>> g = group(add.s(i) for i in range(10)) >>> g(10).get() [10, 11, 12, 13, 14, 15, chord((add.s(i, i) for i in range(10)), xsum.s())().get() 90 A group chained to another task will be automatically converted to a chord: >>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get() 90 Chunking splits a long list of arguments into parts, for example the operation: >>> items = zip(range(1000), range(1000)) # 1000 items >>> add.chunks(items, 10) will split the list of items into chunks of
    0 码力 | 2313 页 | 2.14 MB | 1 年前
    3
  • epub文档 Celery v5.0.5 Documentation

    tasks import add >>> group(add.s(i, i) for i in range(10))().get() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] Partial group >>> g = group(add.s(i) for i in range(10)) >>> g(10).get() [10, 11, 12, 13, 14, 15, chord((add.s(i, i) for i in range(10)), xsum.s())().get() 90 A group chained to another task will be automatically converted to a chord: >>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get() 90 Chunking splits a long list of arguments into parts, for example the operation: >>> items = zip(range(1000), range(1000)) # 1000 items >>> add.chunks(items, 10) will split the list of items into chunks of
    0 码力 | 2315 页 | 2.14 MB | 1 年前
    3
  • epub文档 Celery 3.0 Documentation

    Let’s break the chord expression down: >>> callback = tsum.s() >>> header = [add.s(i, i) for i in range(100)] >>> result = chord(header)(callback) >>> result.get() 9900 Remember, the callback can only print('Task {0!r} raised error: {1!r}'.format(request.id, exc)) >>> c = (group(add.s(i, i) for i in range(10)) | ... xsum.s().on_error(on_chord_error.s()))).delay() Important Notes Tasks used within map([range(10), range(100)]) [45, 4950] is the same as having a task doing: @app.task def temp(): return [xsum(range(10)), xsum(range(100))] and using starmap: >>> ~add.starmap(zip(range(10), range(10)))
    0 码力 | 2110 页 | 2.23 MB | 1 年前
    3
  • epub文档 Celery v4.0.0 Documentation

    Let’s break the chord expression down: >>> callback = tsum.s() >>> header = [add.s(i, i) for i in range(100)] >>> result = chord(header)(callback) >>> result.get() 9900 Remember, the callback can only print('Task {0!r} raised error: {1!r}'.format(request.id, exc)) >>> c = (group(add.s(i, i) for i in range(10)) | ... xsum.s().on_error(on_chord_error.s()))).delay() Important Notes Tasks used within map([range(10), range(100)]) [45, 4950] is the same as having a task doing: @app.task def temp(): return [xsum(range(10)), xsum(range(100))] and using starmap: >>> ~add.starmap(zip(range(10), range(10)))
    0 码力 | 2106 页 | 2.23 MB | 1 年前
    3
  • epub文档 Celery v4.4.6 Documentation

    tasks import add >>> group(add.s(i, i) for i in range(10))().get() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] Partial group >>> g = group(add.s(i) for i in range(10)) >>> g(10).get() [10, 11, 12, 13, 14, 15, chord((add.s(i, i) for i in range(10)), xsum.s())().get() 90 A group chained to another task will be automatically converted to a chord: >>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get() 90 Chunking splits a long list of arguments into parts, for example the operation: >>> items = zip(range(1000), range(1000)) # 1000 items >>> add.chunks(items, 10) will split the list of items into chunks of
    0 码力 | 1216 页 | 1.44 MB | 1 年前
    3
  • epub文档 Celery v4.4.7 Documentation

    tasks import add >>> group(add.s(i, i) for i in range(10))().get() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] Partial group >>> g = group(add.s(i) for i in range(10)) >>> g(10).get() [10, 11, 12, 13, 14, 15, chord((add.s(i, i) for i in range(10)), xsum.s())().get() 90 A group chained to another task will be automatically converted to a chord: >>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get() 90 Chunking splits a long list of arguments into parts, for example the operation: >>> items = zip(range(1000), range(1000)) # 1000 items >>> add.chunks(items, 10) will split the list of items into chunks of
    0 码力 | 1219 页 | 1.44 MB | 1 年前
    3
  • epub文档 Celery v4.4.5 Documentation

    tasks import add >>> group(add.s(i, i) for i in range(10))().get() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] Partial group >>> g = group(add.s(i) for i in range(10)) >>> g(10).get() [10, 11, 12, 13, 14, 15, chord((add.s(i, i) for i in range(10)), xsum.s())().get() 90 A group chained to another task will be automatically converted to a chord: >>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get() 90 Chunking splits a long list of arguments into parts, for example the operation: >>> items = zip(range(1000), range(1000)) # 1000 items >>> add.chunks(items, 10) will split the list of items into chunks of
    0 码力 | 1215 页 | 1.44 MB | 1 年前
    3
  • pdf文档 Celery 4.4.2 Documentation

    tasks import add >>> group(add.s(i, i) for i in range(10))().get() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] • Partial group >>> g = group(add.s(i) for i in range(10)) >>> g(10).get() [10, 11, 12, 13, 14, 15 chord((add.s(i, i) for i in range(10)), xsum.s())().get() 90 A group chained to another task will be automatically converted to a chord: >>> (group(add.s(i, i) for i in range(10)) | xsum.s())().get() 90 Chunking splits a long list of arguments into parts, for example the operation: >>> items = zip(range(1000), range(1000)) # 1000 items >>> add.chunks(items, 10) will split the list of items into chunks of
    0 码力 | 797 页 | 2.85 MB | 1 年前
    3
共 51 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
Celeryv50.0Documentation0.10.20.53.0v44.64.74.54.4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩