积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(5)Lean(5)

语言

全部英语(5)

格式

全部PDF文档 PDF(5)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 5 个.
  • 全部
  • 后端开发
  • Lean
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lean 4

    • Ring Solver, Coinductive predicates, Transfer tactic, • Superposition prover, Linters, • Fourier-Motzkin & Omega, • Many more • Access Lean internals using Lean • Type inference, Unifier, Simplifier
    0 码力 | 20 页 | 1.78 MB | 1 年前
    3
  • pdf文档 Lean in Lean

    Ring Solver • Coinductive predicates • Transfer tactic • Superposition prover • Linters • Fourier-Motzkin & Omega • Many more Lean 3.x limitations • Lean programs are compiled into byte code and
    0 码力 | 54 页 | 4.78 MB | 1 年前
    3
  • pdf文档 The Hitchhiker’s Guide to Logical Verification

    82 5.4 Linear Arithmetic Tactic . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5 Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.6 Further Examples . the two elimination rules associated with conjunction. An introduction rule for a logical symbol (e.g., ∧) is a lemma whose conclusion has that symbol as the outermost symbol. Dually, an elimination rule provide in order to justify a proposition with that symbol as the outermost position, whereas the elimination rules tell us what we may infer from such a proposition. In the above proof, we apply the introduction
    0 码力 | 215 页 | 1.95 MB | 1 年前
    3
  • pdf文档 Theorem Proving in Lean Release 3.23.0

    setting, it shows how to “introduce” or establish an implication. Application can be viewed as an “elimination rule,” showing how to “eliminate” or use an implication in a proof. The other propositional connectives information on the library hierarchy), and each connective comes with its canonical introduction and elimination rules. 3.3.1 Conjunction The expression and.intro h1 h2 builds a proof of p ∧ q using proofs Similarly, and.elim_right h is a proof of q. They are commonly known as the right and left and-elimination rules. example (h : p ∧ q) : p := and.elim_left h example (h : p ∧ q) : q := and.elim_right h
    0 码力 | 173 页 | 777.93 KB | 1 年前
    3
  • pdf文档 The Lean Reference Manual Release 3.3.0

    Prop) (h1 h2 : p) : h1 = h2 := rfl Note: the combination of proof irrelevance and singleton Prop elimination in ι-reduction renders the ideal version of definitional equality, as described above, undecidable the terms it recognizes as well typed, and this does not cause problems in practice. Singleton elimination will be discussed in greater detail in Section 4.4. def R (x y : unit) := false def accrec := which takes arguments – (a : α) (the parameters) – {C : foo a → Type u} (the motive of the elimination) – for each i, the minor premise corresponding to constructori – (x : foo) (the major premise)
    0 码力 | 67 页 | 266.23 KB | 1 年前
    3
共 5 条
  • 1
前往
页
相关搜索词
LeaninTheHitchhikerGuidetoLogicalVerificationTheoremProvingRelease3.23ReferenceManual3.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩