积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(3)Apache Doris(3)

语言

全部中文(简体)(3)

格式

全部PDF文档 PDF(3)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 3 个.
  • 全部
  • 数据库
  • Apache Doris
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 SelectDB案例 从 ClickHouse 到 Apache Doris

    乐、音频和视频等多种形式。通 过技术和数据的赋能,腾讯音乐娱乐持续创新产品,为用户带来更好的产品体验,提高用户 参与度,也为音乐人和合作伙伴在音乐的制作、发行和销售方面提供更大的支持。 在业务运营过程中我们需要对包括歌曲、词曲、专辑、艺人在内的内容对象进行全方位分析, 高效为业务赋能,内容库数据平台旨在集成各数据源的数据,整合形成内容数据资产(以指 标和标签体系为载体),为应用层提供库存盘点、分群画像、指标分析、标签圈选等内容分 据源(MySQL,Oracle,PostgreSQL 等)到 Doris。****  社区目前 Apache Doris 社区活跃、技术交流更多,SelectDB 针对社区有专职的技 术支持团队,在使用过程中遇到问题均能快速得到响应解决。 同时我们也利用 Doris 的特性,解决了架构 1.0 中较为突出的问题。  数仓层:Apache Doris 的 Aggregate 数据模型可支持部分列实时更新,因此我们去 模型,Aggregate 聚合模型满足我们部分列更新的场景需求: Aggregate 聚合模型可以支持多种预聚合模式,可以通过 REPLACE_IF_NOT_NULL 的方式实 现部分列更新。数据写入过程中,Doris 会将多次写入的数据进行聚合,最终用户查询时, 返回一份聚合后的完整且正确的数据。 另外两种数据模型适用的场景,这里也进行简单的介绍:  Unique 模型适用于需要保证 Key
    0 码力 | 12 页 | 1.55 MB | 1 年前
    3
  • pdf文档 百度智能云 Apache Doris 文档

    同时处于安全性考虑,如果该路径已存在同名的文件,则也会导出失败。 Doris 不会管理导出到本地的文件,也不会检查磁盘空间等。这些文件需要用户自行管理,如清理等。 4. 结果完整性保证 该命令是一个同步命令,因此有可能在执行过程中任务连接断开了,从而无法活着导出的数据是否正常结束,或是否完整。 此时可以使用 参数要求任务成功后,在目录下生成一个成功文件标识。用户可以通过这个文件,来判 断导出是否正常结束。 BROKER-LOAD Col。数据会按照源数据中 列的值来保 证顺序性。 Keywords Keywords BROKER, LOAD 最佳实践 最佳实践 1. 查看导入任务状态 Broker Load 是一个异步导入过程,语句执行成功仅代表导入任务提交成功,并不代表数据导入成功。导入状态需要通过 SHOW LOAD 命令查看。 2. 取消导入任务 已提交切尚未结束的导入任务可以通过 CANCEL LOAD 命 导入数据到含有 Sequence Col 列的 Unique Key 模型表中 Keywords Keywords 最佳实践 最佳实践 1. 查看导入任务状态 Stream Load 是一个同步导入过程,语句执行成功即代表数据导入成功。导入的执行结果会通过 HTTP 返回值同步返回。并 以 Json 格式展示。示例如下: category, author, price category, author
    0 码力 | 203 页 | 1.75 MB | 1 年前
    3
  • pdf文档 Apache Doris 在美团外卖数仓中的应用实践

    下图是MOLAP模式与ROLAP模式下应用方案的比较: MOLAP模式的劣势 1. 应用层模型复杂,根据业务需要以及Kylin生产需要,还要做较多模型预处理。这样在不同 的业务场景中,模型的利用率也比较低。 2. Kylin配置过程繁琐,需要配置模型设计,并配合适当的“剪枝”策略,以实现计算成本与查 询效率的平衡。 3. 由于MOLAP不支持明细数据的查询,在“汇总+明细”的应用场景中,明细数据需要同步到 DBMS引擎来响应交互,增加了生产的运维成本。 7 / 8 Apache Doris在美团外卖数仓中的应用实践 Spark大数据博客 - https://www.iteblog.com 可以看到,当使用Bitmap之后,之前的PV计算过程会大幅简化,现场查询时的 IO、CPU、内存,网络资源也会显著减少,并且不再会随着数据规模而线性增加。 总结与思考 在外卖运营分析的业务实践中,由于业务的复杂及应用场景的不同,没有哪一种数据生产方案能
    0 码力 | 8 页 | 429.42 KB | 1 年前
    3
共 3 条
  • 1
前往
页
相关搜索词
SelectDB案例ClickHouseApacheDoris百度智能文档Apache Doris美团
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩