积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(3)Apache Doris(3)

语言

全部中文(简体)(3)

格式

全部PDF文档 PDF(3)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 3 个.
  • 全部
  • 数据库
  • Apache Doris
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 SelectDB案例 从 ClickHouse 到 Apache Doris

    数据架构演进 TDW 是腾讯最大的离线数据处理平台,公司内大多数业务的产品报表、运营分析、数据挖 掘等的存储和计算都是在 TDW 中进行,内容库数据平台的数据加工链路同样是在腾讯数据 仓库 TDW 上构建的。截止目前,内容库数据平台的数据架构已经从 1.0 演进到了 4.0 , 经历了分析引擎从 ClickHouse 到 Apache Doris 的替换、经历了数据架构语义层的初步引 入到深度应用, 一个相对主流的架构,简单介绍一下各层的作用及工作原理:  数仓层:通过 ODS-DWD-DWS 三层将数据整合为不同主题的标签和指标体系, DWM 集市层围绕内容对象构建大宽表,从不同主题域 DWS 表中抽取字段。  加速层:在数仓中构建的大宽表导入到加速层中,Clickhouse 作为分析引擎, Elasticsearch 作为搜索/圈选引擎。  应用层:根据场景创建 DataSet, 的特性,解决了架构 1.0 中较为突出的问题。  数仓层:Apache Doris 的 Aggregate 数据模型可支持部分列实时更新,因此我们去 掉了 DWM 集市层的构建,直接增量到 Doris / ES 中构建宽表,解决了架构 1.0 中 上游数据更新延迟导致整个宽表延迟的问题,进而提升了数据的时效性。数据(指 标、标签等)通过 Spark 统一离线加载到 Kafka 中,使用 Flink
    0 码力 | 12 页 | 1.55 MB | 1 年前
    3
  • pdf文档 百度智能云 Apache Doris 文档

    该操作为异步操作,提交成功后,需通过 SHOW ALTER TABLE MATERIALIZED VIEW 查看作业进度。 MV name 物化视图的名称,必填项。 相同表的物化视图名称不可重复。 query 用于构建物化视图的查询语句,查询语句的结果既物化视图的数据。目前支持的 query 格式为: CREATE CREATE EXTERNAL RESOURCE EXTERNAL RESOURCE ``mysql_odbc_resource 则 前三个作为排序列。 如果 query 中包含分组列的话,则排序列必须和分组列一致。 properties 声明物化视图的一些配置,选填项。 支持以下配置: timeout: 物化视图构建的超时时间。 Example Example 假设 Base 表结构为: 1. 创建一个仅包含原始表 (k1, k2)列的物化视图 物化视图的 schema 如下图,物化视图仅包含两列 k1 Example Example Keywords Keywords years_sub MAKEDATE Description Description 功能:返回指定年份和 dayofyear 构建的日期。dayofyear 必须大于0,否则结果为空。 返回类型:date Example Example Keywords Keywords mysql mysql>> select select
    0 码力 | 203 页 | 1.75 MB | 1 年前
    3
  • pdf文档 Apache Doris 在美团外卖数仓中的应用实践

    仓能力,也欢 迎大家多给我们提出建议。 数仓交互层引擎的应用现状 目前,互联网业务规模变得越来越大,不论是业务生产系统还是日志系统,基本上都是基于Hado op/Spark分布式大数据技术生态来构建数据仓库,然后对数据进行适当的分层、加工、管理。而 在数据应用交互层面,由于时效性的要求,数据最终的展现查询还是需要通过DBMS(MySQL) 、MOLAP(Kylin)引擎来进行支撑。如下图所示:
    0 码力 | 8 页 | 429.42 KB | 1 年前
    3
共 3 条
  • 1
前往
页
相关搜索词
SelectDB案例ClickHouseApacheDoris百度智能文档Apache Doris美团
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩