百度智能云 Apache Doris 文档的数据量没有上限。但是提 交过大的导入会导致运行时间较长,并且失败后重试的代价也会增加。 同时受限于集群规模,我们限制了导入的最大数据量为 ComputeNode 节点数 * 3GB。以保证系统资源的合理利用。如果有 大数据量需要导入,建议分成多个导入任务提交。 Doris 同时会限制集群内同时运行的导入任务数量,通常在 3-10 个不等。之后提交的导入作业会排队等待。队列最大长度 为 两部分,不涉及需要太多内存的计算逻辑。所以通常 2GB 的默认内存限制可 以满足需求。 但在某些场景下,比如一个查询计划,在同一个 BE 上需要扫描的 Tablet 过多,或者 Tablet 的数据版本过多时,可能会导致内 存不足。此时需要通过这个 参数设置更大的内存,比如 4GB、8GB 等。 注意事项 注意事项 不建议一次性导出大量数据。一个 Export 作业建议的导出数据量最大在几十 GB。过大的导出会导致更多的垃圾文件和更高 操作将一个目录中的最后一个文件移走后,该目录也 会被删除。如果该目录没有被清除,用户可以手动清除。 Export 作业只会导出 Base 表的数据,不会导出物化视图的数据。 Export 作业会扫描数据,占用 IO 资源,可能会影响系统的查询延迟。 一个集群内同时运行的 Export 作业最大个数为 5。之后提交的只作业将会排队。 STREAM-LOAD STREAM LOAD STREAM LOAD Description0 码力 | 203 页 | 1.75 MB | 1 年前3
Apache Doris 在美团外卖数仓中的应用实践数据爆炸,每日使用最新维度对历史数据进行回溯计算。在Kylin的MOLAP模式下存在如下问题: 历史数据每日刷新,失去了增量的意义。 每日回溯历史数据量大,10亿+的历史数据回溯。 数据计算耗时3小时+,存储1TB+,消耗大量计算存储资源,同时严重影响SLA的稳定性。 预计算的大量历史数据实际使用率低下,实际工作中对历史的回溯80%集中在近1个月左 右,但为了应对所有需求场景,业务要求计算近半年以上的历史。 不支持明细数据的查询。 :基于实时的大规模并行计算,对集群的要求较高。MPP引擎的核心是通过将数据分散,以实现 CPU、IO、内存资源的分布,来提升并行计算能力。在当前数据存储以磁盘为主的情况下,数据S can需要的较大的磁盘IO,以及并行导致的高CPU,仍然是资源的短板。因此,高频的大规模汇 总统计,并发能力将面临较大挑战,这取决于集群硬件方面的并行计算能力。传统去重算法需要 大量计算资源,实时的大规模去重指标对CPU、内存都是一个巨大挑战。目前Doris最新版本已经 Join特性优化,可以实现秒级响应。 日级别,基于商家明细现场计算,同时满足汇总及下钻明细查询,查询时效基本都可以控 制在秒级。 7日趋势分析,2~3秒。由于数据量较大,根据集群规模不同查询性能有所区别,但数据量 较大时,调动的集群资源较多,因此MPP的并发性能受限于集群的性能。一般原则是并发 较高的业务,需要严格控制查询时效(基本在毫秒级),对于并发不高的业务,允许进行 较大的查询,但也要考虑集群的承受能力。 通过一年来的应用以0 码力 | 8 页 | 429.42 KB | 1 年前3
SelectDB案例 从 ClickHouse 到 Apache Doris迟, 进而导致数据时效性下降。 加速层:不同的标签跟指标特性不同、更新频率也各不相同。由于 ClickHouse 目前 更擅长处理宽表场景,无区别将所有数据导入大宽表生成天的分区将造成存储资源 的浪费,维护成本也将随之升高。 应用层:ClickHouse 采用的是计算和存储节点强耦合的架构,架构复杂,组件依赖 严重,牵一发而动全身,容易出现集群稳定性问题,对于我们来说,同时维护 实时性比较差,由于每个 Source 表产出的时间不一样,往往会因为某些延迟比较 大的 Source 表导致整个数据链路延迟增大。 开发成本较高,该方案只能作为离线方式,若想实现实时方式则需要投入开发资源 进行额外的开发。 而在 Flink 中生成宽表,链路简单、成本低也容易实现,主要流程是:首先用 Spark 将相 关 Source 表最新数据离线导入到 Kafka 中, 接着使用 Flink 这里几点小经验与大家分享: Flink 预聚合:通过主键 ID 预聚合,减少写入压力。(前文已说明,此处不再赘述) 写入 Batch 大小自适应变更:为了不占用过多 Flink 资源,我们实现了从同一个 Kafka Topic 中消费数据写入到不同 Doris 表中的功能,并且可以根据数据的大小 自动调整写入的批次,尽量做到攒批低频写入。 Doris 写入调优:针对-0 码力 | 12 页 | 1.55 MB | 1 年前3
共 3 条
- 1













