积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(4)Apache Doris(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 4 个.
  • 全部
  • 数据库
  • Apache Doris
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 百度智能云 Apache Doris 文档

    INT,DOUBLE,DATE或者 DATETIME类型。 示例: HLL 数据类型 HLL 数据类型 HLL(HyperLogLog) 类型是一个二进制类型。HLL 类型只能用于聚合类型的表(Aggregation Table),并且必须指定聚合类型为 HLL_UNION。 HLL 类型主要用于非精确快速去重场景下,对数据进行预聚合。 HLL列只能通过配套的 hll_union_a hll_union_agg、hll_cardinality、hll_hash 进行查询或使用。 BITMAP 数据类型 BITMAP 数据类型 BITMAP 类型是一个二进制类型。BITMAP 类型只能用于聚合类型的表(Aggregation Table),并且必须指定聚合类型为 BITMAP_UNION。 BITMAP 类型主要用于精确去重场景下,对数据进行预聚合。同时也可以用于如用户画像场景存放用户ID等。 01 sec) Baidu 百度智能云文档 SQL手册 10 当你在查询中书写表,列,或者包含列的表达式的名字时,你可以同时给他们分配一个别名。当你需要使用表名,列名时,你 可以使用别名来访问。别名通常相对原名来说更简短更好记。当需要新建一个别名时,只需在select list或者from list中的表、 列、表达式名称后面加上AS alias从句即可。AS关键词是可选的,用户可以直接
    0 码力 | 203 页 | 1.75 MB | 1 年前
    3
  • pdf文档 SelectDB案例 从 ClickHouse 到 Apache Doris

    集市层围绕内容对象构建大宽表,从不同主题域 DWS 表中抽取字段。  加速层:在数仓中构建的大宽表导入到加速层中,Clickhouse 作为分析引擎, Elasticsearch 作为搜索/圈选引擎。  应用层:根据场景创建 DataSet,作为逻辑视图从大宽表选取所需的标签与指标,同 时可以二次定义衍生的标签与指标。 存在的问题:  数仓层:不支持部分列更新,当上游任一来源表产生延迟,均会造成大宽表延迟, 均会造成大宽表延迟, 进而导致数据时效性下降。  加速层:不同的标签跟指标特性不同、更新频率也各不相同。由于 ClickHouse 目前 更擅长处理宽表场景,无区别将所有数据导入大宽表生成天的分区将造成存储资源 的浪费,维护成本也将随之升高。  应用层:ClickHouse 采用的是计算和存储节点强耦合的架构,架构复杂,组件依赖 严重,牵一发而动全身,容易出现集群稳定性问题,对于我们来说,同时维护 Doris / ES 中构建宽表,解决了架构 1.0 中 上游数据更新延迟导致整个宽表延迟的问题,进而提升了数据的时效性。数据(指 标、标签等)通过 Spark 统一离线加载到 Kafka 中,使用 Flink 将数据增量更新到 Doris 和 ES 中(利用 Flink 实现进一步的聚合,减轻了 Doris 和 ES 的更新压力)。  加速层:该层主要将大宽表拆为小宽表,根据更新频率配置不同的分区策略,减小
    0 码力 | 12 页 | 1.55 MB | 1 年前
    3
  • pdf文档 Apache Doris 在美团外卖数仓中的应用实践

    率不变的情况下,生产耗能及 存储成本都有较大收益。 以20台BE+3FE的Doris环境,效率、性能表现情况如下: 支撑数据分析产品数十个以上,整体响应达到ms级。 支持百万、千万级大表关联查询,同时进行维表关联的雪花模型,经过Colocate Join特性优化,可以实现秒级响应。 日级别,基于商家明细现场计算,同时满足汇总及下钻明细查询,查询时效基本都可以控 制在秒级。 7日趋势分析,2~3 5 / 8 Apache Doris在美团外卖数仓中的应用实践 Spark大数据博客 - https://www.iteblog.com ,随着后续Page Cache,内存表等能力的上线,IO将不再拖后腿,并发能力将有较大提升。 可靠的调度能力:提供5、10、15、30分钟的调度保障能力。 Lambda架构简化:实时数据与离线数据更好的在Doris中进行融合,灵活支撑应用。 谓词下推的传递性优化 如上图所示,对于下面的 SQL: select * from t1 join t2 on t1.id = t2.id where t1.id = 1 Doris开源版本默认会对t2表进行全表Scan,这样会导致上面的查询超时,进而导致外卖业务在D oris上的第一批应用无法上线。 于是我们在Doris中实现了第一个优化:Join谓词下推的传递性优化(MySQL和TiDB中称之为Cons
    0 码力 | 8 页 | 429.42 KB | 1 年前
    3
  • pdf文档 Doris的数据导入机制以及原子性保证

    Contributor 100+,一线互 联网广泛使用 2018 07 01 Doris简介 产品特性 简单易用 扩展性强 性能卓越 高可用 • 高度兼容MySQL • 支持在线表结构变更 • 支持集群动态伸缩 • 高度集成,不依赖于外部存储系统 • 架构优雅,单集群可水平扩展至200台以上 • 查询性能业界领先 • 高并发查询,100台集群可达10w QPS • Label 生成策略 • 外部系统需要保证自身的 At-Least-Once,这样就可以保证 导入流程的 Exactly-Once。 程序自身保证 At-Least-Once 多表原子性导入 • 每个表拆分多个任务,并下发BE • BE执行后汇报FE • FE 判断导入多数完成 publish 生效版本 • 后续查询规划时使用新的数据版本 04 使用案例 Exactly Once 数据消费
    0 码力 | 33 页 | 21.95 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
百度智能ApacheDoris文档SelectDB案例ClickHouseApache Doris美团数据导入机制以及原子保证
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩