积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(4)Apache Doris(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 4 个.
  • 全部
  • 数据库
  • Apache Doris
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 百度智能云 Apache Doris 文档

    'M'不会匹配‘MJ’。如果需要确保表达式能够正常work,可以使用一些函数,如upper(), lower(), substr(), trim()。 举例: 比较操作符 比较操作符 比较操作符用来判断列和列是否相等或者对列进行排序。=, !=, <>, <, <=, >, >=可以适用所有数据类型。其中<>符号是不等于 的意思,和!=的功能是一样的。IN和BETWEEN操作符提供更简短的表达来描述相等、小于、大小等关系的比较。 by: 物化视图的排序列,选填项。 排序列的声明顺序必须和 select_expr 中列声明顺序一致。 如果不声明 order by,则根据规则自动补充排序列。 如果物化视图是聚合类型,则所有的分组列自动补充为排 序列。 如果物化视图是非聚合类型,则前 36 个字节自动补充为排序列。如果自动补充的排序个数小于3个,则 前三个作为排序列。 如果 query 中包含分组列的话,则排序列必须和分组列一致。 duplicate_table duplicate_table;; Baidu 百度智能云文档 SQL手册 48 2. 创建一个以 k2 为排序列的物化视图 物化视图的 schema 如下图,物化视图仅包含两列 k2, k1,其中 k2 列为排序列,不带任何聚合。 3. 创建一个以 k1, k2 分组,k3 列为 SUM 聚合的物化视图 物化视图的 schema 如下图,物化视图包含两列
    0 码力 | 203 页 | 1.75 MB | 1 年前
    3
  • pdf文档 Apache Doris 在美团外卖数仓中的应用实践

    MOLAP模式下存在如下问题: 历史数据每日刷新,失去了增量的意义。 每日回溯历史数据量大,10亿+的历史数据回溯。 数据计算耗时3小时+,存储1TB+,消耗大量计算存储资源,同时严重影响SLA的稳定性。 预计算的大量历史数据实际使用率低下,实际工作中对历史的回溯80%集中在近1个月左 右,但为了应对所有需求场景,业务要求计算近半年以上的历史。 不支持明细数据的查询。 解决方案:引入MPP引擎,数据现用现算 ”的应用场景中,明细数据需要同步到 DBMS引擎来响应交互,增加了生产的运维成本。 4. 较多的预处理伴随着较高的生产成本。 ROLAP模式的优势 1. 应用层模型设计简化,将数据固定在一个稳定的数据粒度即可。比如商家粒度的星形模型 ,同时复用率也比较高。 2. App层的业务表达可以通过视图进行封装,减少了数据冗余,同时提高了应用的灵活性, 降低了运维成本。 3. 同时支持“汇总+明细”。 体验。 双引擎下的应用场景适配问题 架构上通过MOLAP+ROLAP双引擎模式来适配不同应用场景,如下图所示: 技术权衡 MOLAP :通过预计算,提供稳定的切片数据,实现多次查询一次计算,减轻了查询时的计算压力,保证 了查询的稳定性,是“空间换时间”的最佳路径。实现了基于Bitmap的去重算法,支持在不同维度 下去重指标的实时统计,效率较高。 ROLAP :基于实时的大规模并行计算,对集
    0 码力 | 8 页 | 429.42 KB | 1 年前
    3
  • pdf文档 SelectDB案例 从 ClickHouse 到 Apache Doris

    更擅长处理宽表场景,无区别将所有数据导入大宽表生成天的分区将造成存储资源 的浪费,维护成本也将随之升高。  应用层:ClickHouse 采用的是计算和存储节点强耦合的架构,架构复杂,组件依赖 严重,牵一发而动全身,容易出现集群稳定性问题,对于我们来说,同时维护 ClickHouse 和 Elasticsearch 两套引擎的连接与查询,成本和难度都比较高。 除此之外,ClickHouse 由国外开源,交流具有一定的语言学习成本,遇到问题无法准确反  可以形成统一视图,对于核心指标和标签的定义进行统一查看及管理。  应用层与物理引擎完成解耦,可进一步对更加灵活易用的架构进行探索:如何对相 关指标和标签进行加速,如何在时效性和集群的稳定性之间平衡等。 存在的问题: 因为当前架构是对单个标签和指标进行了定义,因此如何在查询计算时自动生成一个准确有 效的 SQL 语句是非常有难度的。如果你有相关的经验,期待有机会可以一起探索交流。 /pull/60  https://github.com/apache/doris-spark-connector/pull/61 通过以上数据导入的优化措施,使得整体导入链路更加稳定,每日离线导入时长下降了 75% ,数据版本累积情况也有所改善,其中 cumu compaction 的合并分数更是从 600+直 降到 100 左右,优化效果十分明显。 查询优化 目
    0 码力 | 12 页 | 1.55 MB | 1 年前
    3
  • pdf文档 Doris的数据导入机制以及原子性保证

    架构优雅,单集群可水平扩展至200台以上 • 查询性能业界领先 • 高并发查询,100台集群可达10w QPS • 流式导入单节点100MB/s,小批量导入毫 秒延迟 • 数据、元数据高可用,线上稳定服务6年 • 机器故障副本自动迁移 01 Doris简介 MySQL Tools (MySQL Networking) FE (Leader,JAVA) FE (Follower,JAVA)
    0 码力 | 33 页 | 21.95 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
百度智能ApacheDoris文档Apache Doris美团SelectDB案例ClickHouse数据导入机制以及原子保证
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩