 Scrapy 1.4 Documentationresponse object: >>> response.css('title') [ Scrapy 1.4 Documentationresponse object: >>> response.css('title') [- ] The result of running response.css('title') is a list-like object called SelectorList fine-grain the selection or extract the data. To extract the text from the title above, you can do: >>> response.css('title::text').extract() ['Quotes to Scrape'] There are two things to note here: one directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags: >>> response.css('title').extract() ['<title>Quotes to Scrapetitle>'] The other thing 0 码力 | 394 页 | 589.10 KB | 1 年前3
 Scrapy 1.3 Documentationresponse object: >>> response.css('title') [ Scrapy 1.3 Documentationresponse object: >>> response.css('title') [- ] The result of running response.css('title') is a list-like object called SelectorList fine-grain the selection or extract the data. To extract the text from the title above, you can do: >>> response.css('title::text').extract() ['Quotes to Scrape'] There are two things to note here: one directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags: >>> response.css('title').extract() ['<title>Quotes to Scrapetitle>'] The other thing 0 码力 | 272 页 | 1.11 MB | 1 年前3
 Scrapy 1.0 Documentationscrapy.Request(full_url, callback=self.parse_question) def parse_question(self, response): yield { 'title': response.css('h1 a::text').extract()[0], 'votes': response.css('.question .vote-count-post::text') s.json file a list of the most upvoted questions in StackOverflow in JSON format, containing the title, link, number of upvotes, a list of the tags and the question content in HTML, looking like this (reformatted ˓→array-faster-than-an-unsorted-array", "tags": ["java", "c++", "performance", "optimization"], "title": "Why is processing a sorted array faster than an unsorted array?", "votes": "9924" }, { "body":0 码力 | 244 页 | 1.05 MB | 1 年前3 Scrapy 1.0 Documentationscrapy.Request(full_url, callback=self.parse_question) def parse_question(self, response): yield { 'title': response.css('h1 a::text').extract()[0], 'votes': response.css('.question .vote-count-post::text') s.json file a list of the most upvoted questions in StackOverflow in JSON format, containing the title, link, number of upvotes, a list of the tags and the question content in HTML, looking like this (reformatted ˓→array-faster-than-an-unsorted-array", "tags": ["java", "c++", "performance", "optimization"], "title": "Why is processing a sorted array faster than an unsorted array?", "votes": "9924" }, { "body":0 码力 | 244 页 | 1.05 MB | 1 年前3
 Scrapy 1.6 Documentationresponse object: >>> response.css('title') [ Scrapy 1.6 Documentationresponse object: >>> response.css('title') [- ] The result of running response.css('title') is a list-like object called SelectorList fine-grain the selection or extract the data. To extract the text from the title above, you can do: >>> response.css('title::text').getall() ['Quotes to Scrape'] There are two things to note here: one directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags: >>> response.css('title').getall() ['<title>Quotes to Scrapetitle>'] The other thing 0 码力 | 295 页 | 1.18 MB | 1 年前3
 Scrapy 1.5 Documentationresponse object: >>> response.css('title') [ Scrapy 1.5 Documentationresponse object: >>> response.css('title') [- ] The result of running response.css('title') is a list-like object called SelectorList fine-grain the selection or extract the data. To extract the text from the title above, you can do: >>> response.css('title::text').extract() ['Quotes to Scrape'] There are two things to note here: one directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags: >>> response.css('title').extract() ['<title>Quotes to Scrapetitle>'] The other thing 0 码力 | 285 页 | 1.17 MB | 1 年前3
 Scrapy 1.3 Documentationresponse object: >>> response.css('title') [ Scrapy 1.3 Documentationresponse object: >>> response.css('title') [- ] The result of running response.css('title') is a list-like object called SelectorList fine-grain the selection or extract the data. To extract the text from the title above, you can do: >>> response.css('title::text').extract() ['Quotes to Scrape'] There are two things to note here: one directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags: >>> response.css('title').extract() ['<title>Quotes to Scrapetitle>'] The other thing 0 码力 | 339 页 | 555.56 KB | 1 年前3
 Scrapy 1.4 Documentationresponse object: >>> response.css('title') [ Scrapy 1.4 Documentationresponse object: >>> response.css('title') [- ] The result of running response.css('title') is a list-like object called SelectorList fine-grain the selection or extract the data. To extract the text from the title above, you can do: >>> response.css('title::text').extract() ['Quotes to Scrape'] There are two things to note here: one directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags: >>> response.css('title').extract() ['<title>Quotes to Scrapetitle>'] The other thing 0 码力 | 281 页 | 1.15 MB | 1 年前3
 Scrapy 1.0 Documentationcallback=self.parse_question) def parse_question(self, response): yield { 'title': response.css('h1 a::text').extract()[0], 'votes': response.css('.question .vote-count- s.json file a list of the most upvoted questions in StackOverflow in JSON format, containing the title, link, number of upvotes, a list of the tags and the question content in HTML, looking like this (reformatted -faster-than-an-unsorted-array", "tags": ["java", "c++", "performance", "optimization"], "title": "Why is processing a sorted array faster than an unsorted array?", "votes": "9924" }, {0 码力 | 303 页 | 533.88 KB | 1 年前3 Scrapy 1.0 Documentationcallback=self.parse_question) def parse_question(self, response): yield { 'title': response.css('h1 a::text').extract()[0], 'votes': response.css('.question .vote-count- s.json file a list of the most upvoted questions in StackOverflow in JSON format, containing the title, link, number of upvotes, a list of the tags and the question content in HTML, looking like this (reformatted -faster-than-an-unsorted-array", "tags": ["java", "c++", "performance", "optimization"], "title": "Why is processing a sorted array faster than an unsorted array?", "votes": "9924" }, {0 码力 | 303 页 | 533.88 KB | 1 年前3
 Scrapy 1.2 Documentationresponse object: >>> response.css('title') [ Scrapy 1.2 Documentationresponse object: >>> response.css('title') [- ] The result of running response.css('title') is a list-like object called SelectorList extract the data. To extract the text from the title above, you can do: 14 Chapter 2. First steps Scrapy Documentation, Release 1.2.3 >>> response.css('title::text').extract() ['Quotes to Scrape'] There directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags: >>> response.css('title').extract() ['<title>Quotes to Scrapetitle>'] The other thing 0 码力 | 266 页 | 1.10 MB | 1 年前3
 Scrapy 1.1 Documentationresponse object: >>> response.css('title') [ Scrapy 1.1 Documentationresponse object: >>> response.css('title') [- ] The result of running response.css('title') is a list-like object called SelectorList fine-grain the selection or extract the data. To extract the text from the title above, you can do: >>> response.css('title::text').extract() ['Quotes to Scrape'] 2.3. Scrapy Tutorial 13 Scrapy Documentation directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags: >>> response.css('title').extract() ['<title>Quotes to Scrapetitle>'] The other thing 0 码力 | 260 页 | 1.12 MB | 1 年前3
共 62 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7














