Jupyter Notebook 5.0.0 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 184 页 | 4.40 MB | 1 年前3
Jupyter Notebook 5.1.0 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 184 页 | 4.36 MB | 1 年前3
Jupyter Notebook 5.2.2 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 183 页 | 4.36 MB | 1 年前3
Jupyter Notebook 5.3.1 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 186 页 | 4.37 MB | 1 年前3
Jupyter Notebook 5.4.0 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 187 页 | 4.37 MB | 1 年前3
Jupyter Notebook 5.4.1 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 187 页 | 4.37 MB | 1 年前3
Jupyter Notebook 5.5.0 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 196 页 | 4.45 MB | 1 年前3
Jupyter Notebook 5.6.0 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 198 页 | 4.45 MB | 1 年前3
Jupyter Notebook 5.7.6 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 204 页 | 4.45 MB | 1 年前3
Jupyter Notebook 5.7.3 DocumentationFormula The probability of getting (k) heads when flipping (n) coins is An Identity of Ramanujan A Rogers-Ramanujan Identity Maxwell’s Equations Equation Numbering and References Inline Typesetting (Mixing \end{equation*} Display \(\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}\) An Identity of Ramanujan Source \begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}\) A Rogers-Ramanujan Identity Source \begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}0 码力 | 203 页 | 4.45 MB | 1 年前3
共 61 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7













