积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)Apache Flink(15)

语言

全部英语(13)中文(简体)(2)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Tv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWp QoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNk Tv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWp QoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNk Tv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWp QoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNk
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    For each element x, let rank(x) be the number of 0s in the end of h(x): • e.g. • x1 = 318, h(x1) = 12 or 01100 => rank(x1) = 2 • x2 = 9013, h(x2) = 24 or 11000 => rank(x2) = 3 h(x) = M−1 ∑ k=0 Vasiliki Kalavri | Boston University 2020 The hash function h hashes x to any of N values with probability 1/N. Out of all x we hash: • around 50% will have a binary representation that ends in at Vasiliki Kalavri | Boston University 2020 The hash function h hashes x to any of N values with probability 1/N. Out of all x we hash: • around 50% will have a binary representation that ends in at
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 Lossy Counting • Find all items x in a data stream such that: • freq(x) > δ*N, where N is the number of stream elements • The solution will not contain item e in the input stream f: estimated frequency of item δ: user-defined threshold, so that freq(x)≥ δ*N,δ∈(0,1) ε: user-defined error
 Output: All items with frequency greater than or equal to δ*N element x in wcur: if x ∈ D, increase its frequency, fx = fx +1 else insert with frequency fx = 1 and error εx = wcur - 1 N = N + 1 Delete step Iterate over D and remove every element x with
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    anaconda.com/miniconda/ # Suppose the name of the downloaded miniconda installer is miniconda.sh chmod +x miniconda.sh # install miniconda ./miniconda.sh -b -p miniconda # Activate the miniconda environment TableEnvironment.create(env_settings) table_env [1]: x7fcd16342ac8> [2]: # Create a streaming TableEnvironment env_settings = EnvironmentSettings.in_streaming_mode() TableEnvironment.create(env_settings) table_env [2]: x7fcd1ad0c0f0> Table Creation Table is a core component of the Python Table API. A Table object describes
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    anaconda.com/miniconda/ # Suppose the name of the downloaded miniconda installer is miniconda.sh chmod +x miniconda.sh # install miniconda ./miniconda.sh -b -p miniconda # Activate the miniconda environment TableEnvironment.create(env_settings) table_env [1]: x7fcd16342ac8> [2]: # Create a streaming TableEnvironment env_settings = EnvironmentSettings.in_streaming_mode() TableEnvironment.create(env_settings) table_env [2]: x7fcd1ad0c0f0> Table Creation Table is a core component of the Python Table API. A Table object describes
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    probability that an element x in S remains: ??? Vasiliki Kalavri | Boston University 2020 17 Inductive step At time tn+1, we need to compute the probability that an element x in S remains: Probability University 2020 17 Inductive step At time tn+1, we need to compute the probability that an element x in S remains: Probability that element n+1 is not selected OR ??? Vasiliki Kalavri | Boston University compute the probability that an element x in S remains: Probability that element n+1 is not selected Probability that n+1 is selected but it doesn’t replace x OR ??? Vasiliki Kalavri | Boston University
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    back-pressure target: 40 rec/s 10 rec/s 100 rec/s Which operator is the bottleneck? What if we scale ο1 x 4? How much to scale ο2? ??? Vasiliki Kalavri | Boston University 2020 14 o1 src o2 back-pressure back-pressure target: 40 rec/s 10 rec/s 100 rec/s Which operator is the bottleneck? What if we scale ο1 x 4? How much to scale ο2? o1 cannot keep up waiting for output waiting for input src o1 o2 ??? Vasiliki back-pressure target: 40 rec/s 10 rec/s 100 rec/s Which operator is the bottleneck? What if we scale ο1 x 4? How much to scale ο2? o1 cannot keep up waiting for output waiting for input src o1 o2 o2
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    pre-aggregation similar to what combiners do in MapReduce Operator separation merge X merge A A X merge A1 merge A2 A2 A1 X X ??? Vasiliki Kalavri | Boston University 2020 map(String key, String value): Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0 Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    subscription pattern language A(X>0) & (B(Y=10);[timespan:5] C(Z<5))[within:15] A, B, C are topics X, Y, Z are inner fields The rule fires when an item of type A having an attribute X > 0 enters the system 1);
 (0..10).to_stream(scope)
 .concat(&stream)
 .inspect(|x| println!("seen: {:?}", x))
 .connect_loop(handle);
 }); t (t, l1) (t, (l1, l2)) Streaming Iteration ‘modified-pattern123’, X.CustomerId FROM webevents PARTITION BY CustomerId AS PATTERN (X Y Z) WHERE X.Event = ‘order’ AND Y.Event = ‘rebate’ AND Y.ItemID = X.ItemID AND Z.Event
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    env.fromElements("DROP", "IGNORE").keyBy(x -> x); DataStream streamOfWords = env.fromElements("data", "DROP", "artisans", "IGNORE") .keyBy(x -> x); control .connect(datastreamOfWords) max)); } } Buffers all the events DataStream input = ... input .keyBy(x -> x.key) .window(TumblingEventTimeWindows.of(Time.minutes(1))) .reduce(new MyReducingMax(), new
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
ExactlyoncefaulttoleranceinApacheFlinkCS591K1DataStreamProcessingandAnalyticsSpring2020CardinalityfrequencyestimationSkewmitigationPy1.15Documentation1.16FilteringsamplingstreamsElasticitystatemigrationPartStreamingoptimizationslanguagesoperatorsemantics
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩