积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(12)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    Python environment It requires Python 3.6 or above with PyFlink pre-installed to be available on the nodes of the standalone cluster. It’s sug- gested to use Python virtual environments to set up the Python • Install Python virtual environments on all the cluster nodes in advance You could install Python virtual environments on all the cluster nodes with PyFlink pre-installed before submitting PyFlink jobs that there is already a Python virtual environment available at /path/to/venv on all the cluster nodes of the standaone cluster. It should be noted that options -pyclientexec and -pyexec are also required
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    Python environment It requires Python 3.6 or above with PyFlink pre-installed to be available on the nodes of the standalone cluster. It’s sug- gested to use Python virtual environments to set up the Python • Install Python virtual environments on all the cluster nodes in advance You could install Python virtual environments on all the cluster nodes with PyFlink pre-installed before submitting PyFlink jobs that there is already a Python virtual environment available at /path/to/venv on all the cluster nodes of the standaone cluster. It should be noted that options -pyclientexec and -pyexec are also required
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 A simple system model stream sources N1 NK N2 … input queue output queue primary nodes secondary nodes other apps I1 I2 O1 O2 N’1 N’K N’2 … I’1 I’2 O’1 O’2 6 Vasiliki Kalavri | Boston disadvantage in this approach? Vasiliki Kalavri | Boston University 2020 Upstream Backup Upstream nodes act as backups for their downstream operators by logging tuples in their output queues until downstream completely processed them. 15 Vasiliki Kalavri | Boston University 2020 Upstream Backup Upstream nodes act as backups for their downstream operators by logging tuples in their output queues until downstream
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    according to the rate the consumer recycles buffers. Remote exchange: If tasks run on different worker nodes, the buffer can be recycled as soon as it is on the TCP channel. • If there is no buffer on
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 Revisiting the basics 4 Dataflow graph • operators are nodes, data channels are edges • channels have FIFO semantics • streams of data elements flow continuously University 2020 38 Safety • Avoid starvation: every data item is eventually processed • Ensure each worker is qualified: if load balancing is applied after fission, each instance must be capable of processing
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    dataflow 1 2 3 6 5 4 ??? Vasiliki Kalavri | Boston University 2020 Dataflow worker activities worker 1 worker 2 worker 3 receive message deserialization processing serialization send message The DS2 model • Collect metrics per configurable observation window W • activity durations per worker • records processed Rprc and records pushed to output Rpsd 17 ??? Vasiliki Kalavri | Boston University The DS2 model • Collect metrics per configurable observation window W • activity durations per worker • records processed Rprc and records pushed to output Rpsd • Capture dependencies through the
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    driver to the worker. dstream.foreachRDD { rdd => val connection = createNewConnection() // executed at the driver rdd.foreach { record => connection.send(record) // executed at the worker } } 32 / driver to the worker. dstream.foreachRDD { rdd => val connection = createNewConnection() // executed at the driver rdd.foreach { record => connection.send(record) // executed at the worker } } 32 /
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    required • Key semantics preserved: values of the same key are always processed by the same worker • Popular keys cause imbalance w2 w1 w3 ??? Vasiliki Kalavri | Boston University 2020 Addressing University 2020 Dynamic resource allocation • Choose one among n workers • check the load of each worker and send the item to the least loaded one • load checking for every item can be expensive • Choose previously • Partial key grouping maps each key to both choices: the partitioner sends the item to the worker with the currently lowest load • no routing history required • state needs to be merged to produce
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    state • High migration cost • When a new node is added, state is shuffled across existing and new nodes • Random I/O and high network communication • Not suitable for adaptive applications 26 Uniform n1 n3 n2 0 2128 Nodes and data are mapped to a ring using the same hash function. Consistent hashing ??? Vasiliki Kalavri | Boston University 2020 n1 n3 n2 0 2128 Nodes and data are mapped h Consistent hashing ??? Vasiliki Kalavri | Boston University 2020 n1 n3 n2 0 2128 Nodes and data are mapped to a ring using the same hash function. ei: h ek: h Consistent
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    undirected unweighted graph, G = (V, E). • We want to estimate the distance between any pair of nodes u, v as the length of the shortest path between them. • A spanner H of graph G is a subgraph of University 2020 48 A k-spanner is a graph synopsis that preserves the distances between any pair of nodes up to a factor of k: ∀(u, v) ∈ V, dG(u, v) ≤ dH(u, v) ≤ k ⋅ dG(u, v) The k-spanner
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16HighavailabilityrecoverysemanticsandguaranteesCS591K1DataStreamProcessingAnalyticsSpring2020FlowcontrolloadsheddingStreamingoptimizationsElasticitystatemigrationPartScalableSparkSkewmitigationFaulttolerancedemoreconfigurationGraphstreamingalgorithms
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩