积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Apache Flink(11)

语言

全部英语(10)中文(简体)(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    point of all Spark Streaming functionality. ▶ The second parameter, Seconds(1), represents the time interval at which streaming data will be divided into batches. val conf = new SparkConf().setAppName(appName) point of all Spark Streaming functionality. ▶ The second parameter, Seconds(1), represents the time interval at which streaming data will be divided into batches. val conf = new SparkConf().setAppName(appName) window is defined by two parameters: window length and slide interval. ▶ A tumbling window effect can be achieved by making slide interval = window length 24 / 79 Window Operations (2/3) ▶ window(windowLength
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operator state • output queues • Short recovery time • High runtime overhead • The checkpoint interval determines the trade-off 14 Ni primary secondary I1 O1 N’i update checkpoint send state operator state • output queues • Short recovery time • High runtime overhead • The checkpoint interval determines the trade-off 14 Ni primary secondary I1 O1 N’i update checkpoint send state re-process many tuples • all tuples that contributed to lost state • a complete queue-trimming interval worth of tuples, if level-0 and level-1 acks are periodically transmitted Overhead • Low bandwidth
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    Collector> out) throws Exception { if (!ride.isStart) { Interval rideInterval = new Interval(ride.startTime, ride.endTime); Minutes duration = rideInterval.toDuration()
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    empty windows! Flink’s built-in window assigners create windows of type TimeWindow. : a time interval between the two timestamps, where start is inclusive and end is exclusive. 7 Built-in Window Kalavri | Boston University 2020 non-overlapping buckets of fixed size 12:10 12:00 12:20 fixed time interval key 3 key 2 key 1 Tumbling windows 8 Vasiliki Kalavri | Boston University 2020 val sensorData:
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    with_rolling_policy(RollingPolicy.default_rolling_policy( part_size=1024 ** 3, rollover_interval=15 * 60 * 1000, inactivity_interval=5 *␣ ˓→60 * 1000)) .build()) ds.map(lambda i: (i[0] + 1, i[1]), Types.TUPLE([Types
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    with_rolling_policy(RollingPolicy.default_rolling_policy( part_size=1024 ** 3, rollover_interval=15 * 60 * 1000, inactivity_interval=5 *␣ ˓→60 * 1000)) .build()) ds.map(lambda i: (i[0] + 1, i[1]), Types.TUPLE([Types
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    is not exceeded. The failure rate is specified as the maximum number of failures within a time interval. • e.g. you can configure that an application be restarted as long as it did not fail more than
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    transactions upon successful checkpoints of Flink, adding latency usually up to the checkpointing interval for each record. In practice, it has proven invaluable to add timestamps to your events at multiple
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    mechanism in case of failures 44 input stream time-based micro-batches D-Streams • During an interval, input data received is stored using RDDs • A D-Stream is a group of such RDDs which can be processed
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    0 enters the system and also an item of type B with Y = 10 is detected, followed (in a time interval of 5–15 s) by an item of type C with Z < 5. 8 Vasiliki Kalavri | Boston University 2020 Streaming
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinkHighavailabilityrecoverysemanticsguaranteesCS591K1DataAnalyticsSpring2020inApacheWindowstriggersPy1.15Documentation1.16Faulttolerancedemoreconfiguration监控应用程序应用程序入门optimizationslanguagesoperator
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩