积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(12)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    to set up PyFlink development environment in your local machine. This is usually used for local execution or development in an IDE. Set up Python environment It requires Python 3.6 or above with PyFlink given Python virtual environment at client side (for job compiling) and server side (for Python UDF execution) separately. 1.1. Getting Started 7 pyflink-docs, Release release-1.15 • Specify the Python virtual cluster nodes during job execution. It should be noted that option -pyexec is also required to specify the Python virtual environment to use at server side (for Python UDF execution). For the Python virtual
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    to set up PyFlink development environment in your local machine. This is usually used for local execution or development in an IDE. Set up Python environment It requires Python 3.6 or above with PyFlink given Python virtual environment at client side (for job compiling) and server side (for Python UDF execution) separately. 1.1. Getting Started 7 pyflink-docs, Release release-1.16 • Specify the Python virtual cluster nodes during job execution. It should be noted that option -pyexec is also required to specify the Python virtual environment to use at server side (for Python UDF execution). For the Python virtual
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    processing optimizations ??? Vasiliki Kalavri | Boston University 2020 2 • Costs of streaming operator execution • state, parallelism, selectivity • Dataflow optimizations • plan translation alternatives || B Task: B || C Data: A || A ??? Vasiliki Kalavri | Boston University 2020 8 Distributed execution in Flink ??? Vasiliki Kalavri | Boston University 2020 9 Identify the most efficient way to execute strategies? • before execution or during runtime Query optimization (I) ??? Vasiliki Kalavri | Boston University 2020 10 Optimization strategies • enumerate equivalent execution plans • minimize intermediate
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    approximate answers … S1 S2 Sr Input Manager Scheduler QoS Monitor Load Shedder Query Execution Engine Qm Q2 Q1 Ad-hoc or continuous queries Input streams … ??? Vasiliki Kalavri | Boston unnecessary result degradation! • Load shedding components rely on statistics gathered during execution: • A statistics manager module monitors processing and input rates and periodically estimates continuously or by running the system for a designated period of time, prior to regular query execution. 10 ??? Vasiliki Kalavri | Boston University 2020 Estimating cost and selectivity 11 • Selectivity:
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Dataflow Systems Distributed execution Partitioned state Exact results Out-of-order support Single-node execution Synopses and sketches Approximate results In-order data processing 2020 • No particular basic stream model (time-series, turnstile…) is imposed by the dataflow execution engine. • The burden of representation and denotations if left to the application developer/user out-of-order Results approximate exact Language SQL extensions, CQL Java, Scala, Python, SQL Execution centralized distributed Parallelism pipeline pipeline, task, data State limited, in-memory partitioned
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    HOk8+K8Ox+z1iWnmDmAP3A+fwCD9I4G We need to retrieve a distributed cut in a system execution that yields a system configuration Validity (safety): Termination (liveness): Obtain a valid CfjxXg3PqatJaOY2QV/yvj8AfLTl3A= We need to retrieve a distributed cut in a system execution that yields a system configuration Validity (safety): Termination (liveness): Obtain a valid m m’ System Possible Execution ??? Vasiliki Kalavri | Boston University 2020 Validity Explained p1 p2 p3 p1 p2 p3 m m’ C events in cut System Possible Execution ??? Vasiliki Kalavri | Boston
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    JobManager is a single point of failure Flink applications • It keeps metadata about application execution, such as pointers to completed checkpoints. • A high-availability mode migrates the responsibility increased load • scale in to save resources • Fix bugs or change business logic • Optimize execution plan • Change operator placement • skew and straggler mitigation • Migrate to a different
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    be the output stream produced by input e. In the event of a failure, let Of be the pre-failure execution of the primary and O’ the output produced by the secondary after recovery. • Precise recovery convergent-capable: it can re-build internal state in a way that it eventually converges to a non-failure execution output • repeatable: it produces identical duplicate tuples Vasiliki Kalavri | Boston University
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    temperature”)
 }
 } Flink programs are defined in regular Scala/Java methods Set up the execution environment: local, cluster, I/O, time semantics, parallelism, … Example: Sensor Readings
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020FlowcontrolloadsheddingprocessingfundamentalsScalableSparkExactlyoncefaulttoleranceinApacheFaultdemoreconfigurationHighavailabilityrecoverysemanticsguaranteesIntroductiontoKafka
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩