积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(12)中文(简体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    6.3 Q3: Types.BIG_INT() VS Types.LONG() . . . . . . . . . . . . . . . . . . . . . . 32 1.4 API reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 githubusercontent.com/apache/flink/master/flink-python/pyflink/ ˓→examples/table/word_count.py -o word_count.py python3 word_count.py # You will see outputs as following: # Use --input to specify file input. # githubusercontent.com/apache/flink/master/flink-python/pyflink/ ˓→examples/table/word_count.py -o word_count.py python3 word_count.py If there any any problems, you could check the logging messages in the log
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    6.3 Q3: Types.BIG_INT() VS Types.LONG() . . . . . . . . . . . . . . . . . . . . . . 32 1.4 API reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 githubusercontent.com/apache/flink/master/flink-python/pyflink/ ˓→examples/table/word_count.py -o word_count.py python3 word_count.py # You will see outputs as following: # Use --input to specify file input. # githubusercontent.com/apache/flink/master/flink-python/pyflink/ ˓→examples/table/word_count.py -o word_count.py python3 word_count.py If there any any problems, you could check the logging messages in the log
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Counting distinct elements 2 ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting visiting one or multiple webpages ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one Naive solution: maintain a hash table ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    = ssc.receiverStream(new CustomReceiver(host, port)) val words = customReceiverStream.flatMap(_.split(" ")) 18 / 79 Operations on DStreams ▶ Input operations ▶ Transformation ▶ Output operations the records of the source DStream on which func returns true. 21 / 79 Transformations (3/4) ▶ count • Returns a new DStream of single-element RDDs by counting the number of elements in each RDD of DStream that contains the union of the elements in two DStreams. 22 / 79 Transformations (3/4) ▶ count • Returns a new DStream of single-element RDDs by counting the number of elements in each RDD of
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    their contents as a function of time. • average price of items bought within the last 5 minutes • Count-based (physical) windows define their contents according to the number of events. • average price commonly to be used as input to multiple downstream operators. • Group by / Partition Operators split a stream into sub-streams according to a function or the event contents. • one stream per customer Vasiliki Kalavri | Boston University 2020 CQL GroupBy Example Select IStream(Count(*)) From S1 [Rows 1000] Group By S1.B Count the number or events in the last 1000 rows for each value of B 20
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    3.Output to Sinks 3 Vasiliki Kalavri | Boston University 2020 Streaming word count textStream .flatMap {_.split("\\W+")} .map {(_, 1)} .keyBy(0) .sum(1) .print() “live and let
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    merge, split, query, subscribe, … State operations and types 4 Consider you are designing a state interface. What operations should state support? What state types can you think of? • Count, sum,
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ?? Vasiliki Kalavri | Boston University 2020 Types of Parallelism 7 B A C A B D A A B split Pipeline: A || B Task: B || C Data: A || A ??? Vasiliki Kalavri | Boston University 2020 8 Distributed applying B and then A. • holds if both operators are stateless Re-ordering split and merge split merge merge split merge split When might this be beneficial? ??? Vasiliki Kalavri | Boston University deadlocks: if split cannot push data because one channel is full and merge cannot receive data because another channel is empty Operator fission Data parallelism, replication A A A split merge ???
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the sum of the squares of the values • the number of observations • μ = sum / count • var = (sum of squares / count) - μ2 Then var = ∑ (xi − μ)2 N ??? Vasiliki Kalavri | Boston University 2020 compute the three summary values in a single pass through the data. • μ = sum / count • var = (sum of squares / count) - μ2 Then var = ∑ (xi − μ)2 N ??? Vasiliki Kalavri | Boston University 2020 compute the three summary values in a single pass through the data. • μ = sum / count • var = (sum of squares / count) - μ2 Then var = ∑ (xi − μ)2 N ??? Vasiliki Kalavri | Boston University 2020
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    parameter of an operator defines the number of key groups into which the keyed state of the operator is split. • The number of key groups limits the maximum number of parallel tasks to which keyed state can
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020ScalableSparkStreaminglanguagesoperatorsemanticsIntroductiontoApacheKafkaStatemanagementoptimizationsFilteringsamplingstreamsFaulttolerancedemoreconfiguration
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩