PyFlink 1.15 DocumentationMachine Learning (ML) pipelines and ETL processes. If you’re already familiar with Python and libraries such as Pandas, then PyFlink makes it simpler to leverage the full capabilities of the Flink ecosystem tgz && \ tar -xvf Python-3.7.9.tgz && \ cd Python-3.7.9 && \ ./configure --without-tests --enable-shared && \ make -j6 && \ make install && \ ldconfig /usr/local/lib && \ cd .. && rm -f Python-3.7.9.tgz0 码力 | 36 页 | 266.77 KB | 1 年前3
PyFlink 1.16 DocumentationMachine Learning (ML) pipelines and ETL processes. If you’re already familiar with Python and libraries such as Pandas, then PyFlink makes it simpler to leverage the full capabilities of the Flink ecosystem tgz && \ tar -xvf Python-3.7.9.tgz && \ cd Python-3.7.9 && \ ./configure --without-tests --enable-shared && \ make -j6 && \ make install && \ ldconfig /usr/local/lib && \ cd .. && rm -f Python-3.7.9.tgz0 码力 | 36 页 | 266.80 KB | 1 年前3
Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020separate threads of control • avoid communication cost without losing pipeline parallelism • use a shared buffer for communication • Fused filters / projections at the source can significantly reduce I/O disk I/O • fixed number of random state accesses, 32K L1 cache • the throughput of the non-shared version degrades first State sharing B A Β Α Profitability ??? Vasiliki Kalavri | Boston University0 码力 | 54 页 | 2.83 MB | 1 年前3
Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020producer only needs to receive ack from broker 9 Communication patterns (I) Load balancing or shared subscription • A logical producer/consumer can be implemented by multiple physical tasks running0 码力 | 33 页 | 700.14 KB | 1 年前3
Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020connect(priceRequests).flatMap( new CoFlatMapFunction[(String, Double), Item, Offer] { // shared state between the two streams val factorValues: HashMap[String, Double] = HashMap.empty0 码力 | 26 页 | 3.33 MB | 1 年前3
Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020Vasiliki Kalavri | Boston University 2020 Distributed dataflow model • Exploit data parallelism and shared-nothing architectures to scale stream processing to high-volume streams and large state • Streams0 码力 | 45 页 | 1.22 MB | 1 年前3
共 6 条
- 1













