积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(11)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    Python 3.6 to 3.9 PyFlink 1.15 Python 3.6 to 3.8 PyFlink 1.14 Python 3.6 to 3.8 You could check your Python version as following: 3 pyflink-docs, Release release-1.15 python3 --version Create a Python production when there are massive Python dependencies. It’s supported to use Python virtual environment in your PyFlink jobs, see PyFlink Dependency Management for more details. Create a virtual environment using environment, run: source venv/bin/activate That is, execute the activate script under the bin directory of your virtual environment. Create a virtual environment using conda To create a virtual environment using
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    Python 3.6 to 3.9 PyFlink 1.15 Python 3.6 to 3.8 PyFlink 1.14 Python 3.6 to 3.8 You could check your Python version as following: 3 pyflink-docs, Release release-1.16 python3 --version Create a Python production when there are massive Python dependencies. It’s supported to use Python virtual environment in your PyFlink jobs, see PyFlink Dependency Management for more details. Create a virtual environment using environment, run: source venv/bin/activate That is, execute the activate script under the bin directory of your virtual environment. Create a virtual environment using conda To create a virtual environment using
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    and reliable streaming applications • have a solid understanding of how stream processing systems work and what factors affect their performance • be aware of the challenges and trade-offs one needs Flink and Kafka to build a real-time monitoring and anomaly detection framework for datacenters. Your framework will: • Detect “suspicious” event patterns • Raise alerts for abnormal system metrics transaction analysis • Fraud detection, online risk calculation Example: Someone steals your phone and sings in your banking app. The app allows transfers of up to €1000 and so the thief makes transfers
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Directory for checkpoints filesystem # # state.checkpoints.dir: path/to/checkpoint/folder/ In your Flink program: val env = StreamExecutionEnvironment.getExecutionEnvironment val checkpointPath: checkpointId, long timestamp) void restoreState(List state) Operator state 22 • A function can work with operator list state by implementing the ListCheckpointed interface • snapshotState() is invoked
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    terms of the number of records for any partition in this window. An increasing value over time is your best indication that the consumer group is not keeping up with the producers. millisBehindLatest buffer events for some time (e.g. in a time window) for functional reasons. 4. Each computation in your Flink topology (framework or user code), as well as each network shuffle, takes time and adds to checkpointing interval for each record. In practice, it has proven invaluable to add timestamps to your events at multiple stages (at least at creation, persistence, ingestion by Flink, publication by
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 14 Combining estimates • Average won’t work: The expected value of 2R is too large. • Median won’t work: it is always a power of 2, thus, if the correct estimate is between
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operators can be placed at any location in the query plan • Dropping near the source avoids wasting work but it might affect results of multiple queries if the source is connected to multiple queries.
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Edge endpoints must have different signs • When merging components, if flipping all signs doesn’t work => the graph is not bipartite Bipartite graph checking ??? Vasiliki Kalavri | Boston University
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the size of intermediate results • execute selective joins first => follow-up joins will have less work to do Algebraic re-orderings ??? Vasiliki Kalavri | Boston University 2020 20 Safety • Ensure
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    for data streams • patterns, transformations, declarative • traditional blocking operators don’t work on streams • non-blocking versions or windows • how to define non-blocking aggregates • NB-SQL
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16CourseintroductionCS591K1DataStreamProcessingandAnalyticsSpring2020Statemanagement监控Apache应用程序应用程序入门CardinalityfrequencyestimationFlowcontrolloadsheddingGraphstreamingalgorithmsStreamingoptimizationslanguagesoperatorsemantics
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩