积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)Apache Flink(15)

语言

全部英语(13)中文(简体)(2)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while the train is in the tunnel • results depend on aren’t deterministic • Event time • the time when an event actually happened • an event-time window would give you the extra life • results are deterministic and independent of the processing speed
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    different things • last 5 sec • last 10 events • last 1h every 10 min • last user session Window operators 2 Vasiliki Kalavri | Boston University 2020 object MaxSensorReadings { def main(args: 0)))
 .keyBy(_.id) .timeWindow(Time.minutes(1)) .max("temp")
 } } 3 Example: Window sensor readings Vasiliki Kalavri | Boston University 2020 In the DataStream API, you can use the or IngestionTime Vasiliki Kalavri | Boston University 2020 Window operators can be applied on a keyed or a non-keyed stream: • Window operators on keyed windows are evaluated in parallel • Non-keyed
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    DStream. 23 / 79 Window Operations (1/3) ▶ Spark provides a set of transformations that apply to a over a sliding window of data. ▶ A window is defined by two parameters: window length and slide interval interval. ▶ A tumbling window effect can be achieved by making slide interval = window length 24 / 79 Window Operations (2/3) ▶ window(windowLength, slideInterval) • Returns a new DStream which is computed based on windowed batches. ▶ countByWindow(windowLength, slideInterval) • Returns a sliding window count of elements in the stream. ▶ reduceByWindow(func, windowLength, slideInterval) • Returns
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    key MovingAverage average = averageState.value(); // create a new MovingAverage (with window size 2) if none exists for this key if (average == null) average = new MovingAverage(2); keyBy() .window(<window assigner>) .reduce|aggregate|process(<window function>) stream. .windowAll(<window assigner>) .reduce|aggregate|process(<window function>) ◦TumblingEventTimeWindows s.withGap(Time.minutes(30)) DataStream input = ... input .keyBy(“key”) .window(TumblingEventTimeWindows.of(Time.minutes(1))) .process(new MyWastefulMax()); public static class
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    drop? • Window-aware load shedding applies shedding to entire windows instead of individual tuples • When discarding tuples at the sources or another point in a query with multiple window aggregations aggregations, it is unclear how shedding will affect the correctness of downstream window operators. • This approach preserves window integrity and guarantees that the results under shedding will not be approximations shedding measures tuple utility • The method selects tuples to discard by relying on the notion of a window-based concept drift. • The metric is defined by computing a similarity metric across windows.
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    SQuAl Queries are represented in graphical representation using boxes and arrows Tumble Window Tumble Window Join(S1.A = S2.A) S1 S2 7 Vasiliki Kalavri | Boston University 2020 Composite subscription records arrive. • projection, selection, union 14 Vasiliki Kalavri | Boston University 2020 Window Operators • Probably the most important operators in stream processing systems • Almost universally the stream on which computations can be performed 15 Vasiliki Kalavri | Boston University 2020 Window types (I) • Time-based (logical) windows define their contents as a function of time. • average
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    replaces any existing tuple with the same t(A) value to form a new relation state. • as a sliding window with length k in which each subsequence of k tuples represents a relation state in the sequence data channels • operators can accumulate state, have multiple inputs, express event- time custom window-based logic • some systems, like Timely Dataflow support cyclic dataflows and iterations on streams continuously along edges Operators • receive one or more input streams • perform tuple-at-a-time, window, logic, pattern matching transformations • output one or more streams of possibly different
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    g., if ε=0.2, w=5 (5 items per window) • wcur: the current window id • We keep a list D of element frequencies and their maximum associated error. • Once a window fills up, we remove infrequent Kalavri | Boston University 2020 Lossy counting algorithm D = {} // empty list wcur = 1 // first window id N = 0 // elements seen so far Insert step For each element x in wcur: if x ∈ D, increase
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    100 rec 100 recs Observation Window W 0.5s ??? Vasiliki Kalavri | Boston University 2020 16 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Observation Window W 0.5s Instrumentation Metrics Vasiliki Kalavri | Boston University 2020 The DS2 model • Collect metrics per configurable observation window W • activity durations per worker • records processed Rprc and records pushed to output Rpsd Vasiliki Kalavri | Boston University 2020 The DS2 model • Collect metrics per configurable observation window W • activity durations per worker • records processed Rprc and records pushed to output Rpsd
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    <#StarWars, 300> Any non-trivial streaming computation maintains state: • rolling aggregations • window contents • input offsets • machine learning models State in dataflow computations 3 Vasiliki 300> <#Brexit> Any non-trivial streaming computation maintains state: • rolling aggregations • window contents • input offsets • machine learning models State in dataflow computations 3 Vasiliki <#Brexit, 521> Any non-trivial streaming computation maintains state: • rolling aggregations • window contents • input offsets • machine learning models State in dataflow computations 3 Vasiliki
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
NotionsoftimeandprogressCS591K1DataStreamProcessingAnalyticsSpring2020WindowstriggersScalableSparkStreamingFlinkinApacheFlowcontrolloadsheddinglanguagesoperatorsemanticsprocessingfundamentalsSkewmitigationElasticitystatemigrationPartHighavailabilityrecoveryguarantees
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩