积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)Apache Flink(19)

语言

全部英语(17)中文(简体)(2)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    entire stream in an accessible way • we have to process stream elements on-the-fly using limited memory 2 Vasiliki Kalavri | Boston University 2020 Properties of data streams • They arrive continuously single-pass Updates arbitrary append-only Update rates relatively low high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively University 2020 Time-Series Model: The jth update is (j, A[j]) and updates arrive in increasing order of j, i.e. we observe the entries of A by increasing index. This can model time-series data streams:
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    graph directed graph 4 ??? Vasiliki Kalavri | Boston University 2020 Graph streams Graph streams model interactions as events that update an underlying graph structure 5 Edge events: A purchase 2020 8 Some algorithms model graph streams a sequence of vertex events. A vertex stream consists of events that contain a vertex and all of its neighbors. Although this model can enable a theoretical theoretical analysis of streaming algorithms, it cannot adequately model real-world unbounded streams, as the neighbors cannot be known in advance. Vertex streams (not today) ??? Vasiliki Kalavri | Boston
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    associated with a Receiver object. • It receives the data from a source and stores it in Spark’s memory for processing. ▶ Three categories of streaming sources: 1. Basic sources directly available in associated with a Receiver object. • It receives the data from a source and stores it in Spark’s memory for processing. ▶ Three categories of streaming sources: 1. Basic sources directly available in Sources (2/3) class CustomReceiver(host: String, port: Int) extends Receiver[String](StorageLevel.MEMORY_AND_DISK_2) with Logging { def onStart() { new Thread("Socket Receiver") { override def run() {
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    processed? Was mo delivered downstream? Vasiliki Kalavri | Boston University 2020 A simple system model stream sources N1 NK N2 … input queue output queue primary nodes secondary nodes other apps performance affected by the fault-tolerance mechanism under normal, failure- free operation? • How much memory or disk space is required to maintain input tuples and state? Recovery speed • How long does it
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    poles placement, sampling period, damping Cannot identify individual bottlenecks neither model 2-input operators ??? Vasiliki Kalavri | Boston University 2020 Heuristic models 11 • Metrics 1s o2 o1 ??? Vasiliki Kalavri | Boston University 2020 The DS2 model 17 ??? Vasiliki Kalavri | Boston University 2020 The DS2 model • Collect metrics per configurable observation window W • activity Rprc and records pushed to output Rpsd 17 ??? Vasiliki Kalavri | Boston University 2020 The DS2 model • Collect metrics per configurable observation window W • activity durations per worker • records
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    be expressed using only non-blocking operators? 22 Vasiliki Kalavri | Boston University 2020 Model and formalization (I) A stream is a sequence of unbounded length, where tuples are ordered by their t ∈ S to denote that, for some 1 ≤ i ≤ n, ti = t. 23 Vasiliki Kalavri | Boston University 2020 Model and formalization (II) Pre-sequence (prefix): Let S = [t1, … ,tn] be a sequence and 0 < k ≤ n. Then streaming and static data. Requirements (or why SQL is not enough) • Push-based model as opposed to the pull-based model of SQL, i.e. an application or client asks for the query results when they need
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    g-102 • Watermarks, Tables, Event Time, and the Dataflow Model: https:// www.confluent.jp/blog/watermarks-tables-event-time-dataflow-model/ Further reading 22
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    ..................................................................................... 16 4.13.1 Memory................................................................................................. 7/ops/config.html#configuring-the-network-buffers 8 https://www.da-platform.com/blog/manage-rocksdb-memory-size-apache-flink? __hstc=216506377.c9dc814ddd168ffc714fc8d2bf20623f. 1550652804788.1550652804788 metrics you want to look at are memory consumption and CPU load of your Task- & JobManager JVMs. 4.13.1 Memory Flink reports the usage of Heap, NonHeap, Direct & Mapped memory for JobManagers and TaskManagers
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    integer ru between 0 and 9 and add the user to the sample if ru = 0. Do we need to keep all users in memory? ??? Vasiliki Kalavri | Boston University 2020 We can use a hash function h to hash the user name Kalavri | Boston University 2020 28 Assume we expect around 1 billion elements and we have a fixed memory budget of 512MB • How many hash functions to use? • What would be the false positive rate? Kalavri | Boston University 2020 28 Assume we expect around 1 billion elements and we have a fixed memory budget of 512MB • How many hash functions to use? • What would be the false positive rate?
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    environments to use. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -pyclientexec could not meet. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -Dyarn.shi following: ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -Dyarn.shi
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
StreamprocessingfundamentalsCS591K1DataProcessingandAnalyticsSpring2020GraphstreamingalgorithmsScalableSparkStreamingFlinkHighavailabilityrecoverysemanticsguaranteesElasticitystatemigrationPartlanguagesoperatorNotionsoftimeprogress监控Apache应用程序应用程序入门FilteringsamplingstreamsPy1.15Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩