积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)Apache Flink(19)

语言

全部英语(18)中文(简体)(1)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    --that, 1] # ... If there are any problems, you could perform the following checks. Check the logging messages in the log file to see if there are any problems: # Get the installation directory of PyFlink # It will output a path like the following: # /path/to/python/site-packages/pyflink # Check the logging under the log directory ls -lh /path/to/python/site-packages/pyflink/log # You will see the log file count.py -o word_count.py python3 word_count.py If there any any problems, you could check the logging messages in the log file as following: # Get the installation directory of PyFlink python3 -c "import
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    --that, 1] # ... If there are any problems, you could perform the following checks. Check the logging messages in the log file to see if there are any problems: # Get the installation directory of PyFlink # It will output a path like the following: # /path/to/python/site-packages/pyflink # Check the logging under the log directory ls -lh /path/to/python/site-packages/pyflink/log # You will see the log file count.py -o word_count.py python3 word_count.py If there any any problems, you could check the logging messages in the log file as following: # Get the installation directory of PyFlink python3 -c "import
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    fully processed? Was mo delivered downstream? Vasiliki Kalavri | Boston University 2020 A simple system model stream sources N1 NK N2 … input queue output queue primary nodes secondary nodes other semantics depend on the operator type: • arbitrary: it depends on order, randomness, or external system • deterministic: it produces the same output when starting from the same initial state and given University 2020 Upstream Backup Upstream nodes act as backups for their downstream operators by logging tuples in their output queues until downstream operators have completely processed them. 15 Vasiliki
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    broker: a system that connects event producers with event consumers. • It receives messages from the producers and pushes them to the consumers. • A TCP connection is a simple messaging system which which connects one sender with one recipient. • A general messaging system connects multiple producers to multiple consumers by organizing messages into topics. 7 Message Broker producer producer update the IDs of objects that have changed. • Logging to multiple systems • a Google Compute Engine instance can write logs to the monitoring system, to a database for later querying, and so on.
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    CustomReceiver(host: String, port: Int) extends Receiver[String](StorageLevel.MEMORY_AND_DISK_2) with Logging { def onStart() { new Thread("Socket Receiver") { override def run() { receive() }}.start() } Output Operations (1/4) ▶ Push out DStream’s data to external systems, e.g., a database or a file system. ▶ foreachRDD: the most generic output operator • Applies a function to each RDD generated from minutes"), col("word")).count() 67 / 79 Flink 68 / 79 Flink ▶ Distributed data flow processing system ▶ Unified real-time stream and batch processing ▶ Process unbounded and bounded Data ▶ Design
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 Upstream Backup Upstream nodes act as backups for their downstream operators by logging tuples in their output queues until downstream operators have completely processed them. 4 Vasiliki retrieve a distributed cut in a system execution that yields a system configuration Validity (safety): Termination (liveness): Obtain a valid system configuration A full system configuration is eventually eventually captured A snapshot algorithm attempts to capture a coherent global state of a distributed system ??? Vasiliki Kalavri | Boston University 2020 Snapshotting Protocols p1 p2 p3 C m
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Mechanism: How to apply the re-configuration? 3 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions processing a tuple and all its derived results • Policy • each operator as a single-server queuing system • generalized Jackson networks • Action • predictive, at-once for all operators ??? Vasiliki processing a tuple and all its derived results • Policy • each operator as a single-server queuing system • generalized Jackson networks • Action • predictive, at-once for all operators Too fine-grained
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    latency constraints that can tolerate approximate results. Slow down the flow of data: • The system buffers excess data for later processing, once input rates stabilize. • Requires a persistent process of discarding data when input rates increase beyond system capacity. • Load shedding techniques operate in a dynamic fashion: the system detects an overload situation during runtime and selectively streams with known arrival rates C: system processing capacity H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state Load(N(I)): the load
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    ....................................................................................... 22 4.14 System Resources....................................................................................... is processed by Apache Flink, which then writes the results to a database or calls a downstream system. In such a pipeline, latency can be introduced at each stage and for various reasons including the TaskManager (in case of a containerized setup), or by providing more TaskManagers. In general, a system already running under very high load during normal operations, will need much more time to catch-up
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    & reconfiguration ??? Vasiliki Kalavri | Boston University 2020 • To recover from failures, the system needs to • restart failed processes • restart the application and recover its state 2 Checkpointing and all required metadata, such as the application’s JAR file, into a remote persistent storage system • Zookeeper also holds state handles and checkpoint locations 5 JobManager failures ??? Vasiliki Vasiliki Kalavri | Boston University 2020 12 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16HighavailabilityrecoverysemanticsandguaranteesCS591K1DataStreamProcessingAnalyticsSpring2020ingestionpubsubsystemsScalableSparkStreamingExactlyoncefaulttoleranceinApacheElasticitystatemigrationPartFlowcontrolloadshedding监控应用程序应用程序入门Faultdemoreconfiguration
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩