积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)Apache Flink(7)

语言

全部英语(7)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • freq(x) > δ*N, where N is the number of stream elements • The solution will not contain any item y with frequency: • freq(y) < (δ - ε)*N, for a user-chosen value ε
 4 (δ - ε)*Ν δ*Ν not included of items N: number of items in the stream fe: true frequency of the item e in the input stream f: estimated frequency of item δ: user-defined threshold, so that freq(x)≥ δ*N,δ∈(0,1) ε: user-defined user-defined error
 Output: All items with frequency greater than or equal to δ*N. No item with frequency less than (δ-ε)*N. 5 ??? Vasiliki Kalavri | Boston University 2020 Notation (II) • We define windows
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    fires when an item of type A having an attribute X > 0 enters the system and also an item of type B with Y = 10 is detected, followed (in a time interval of 5–15 s) by an item of type C with Z 2020 Streaming Operators 9 Vasiliki Kalavri | Boston University 2020 Operator types (I) • Single-Item Operators process stream elements one-by-one. • selection, filtering, projection, renaming. • when at least one item has been detected. • repetition of an item I of degree (m, n) is satisfied when I is detected at least m times but o more than n times. • negation of an item I is satisfied when
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    DataStream[(String, Double)] = … val priceRequests: DataStream[Item] = ... factors.connect(priceRequests).flatMap( new CoFlatMapFunction[(String, Double), Item, Offer] { // shared state between the two streams method for the stream of price requests override def flatMap2(item: Item, out: Collector[Offer]) = { out.collect(computePrice(item, factorValues)) } }) 17 Vasiliki Kalavri | Boston University
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    getState(descriptor); } @Override public Tuple2 map (Tuple2 item) throws Exception { // access the state for this key MovingAverage average = averageState this event to the moving average average.add(item.f1); averageState.update(average); // return the smoothed result return new Tuple2(item.f0, average.getAverage()); } } Connected
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    empty bag and then inserts each successive stream item: • ins([]) = Ø • ins(P:i) = insert(i, ins(P)), where P:i denotes the sequence P extended by item i. Insert-Unique (distinct): The reconstitution Insert-Replace: If the stream has a key, the reconstitution function ins_r guarantees that only the most recent item with a given key is included: • ins_r([]) = Ø • ins_r(P:i) = insert(i, {j | j ∈ ins_r(P) ^ j.A ≠
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operations are commutative • natural joins are associative • Move projections early to reduce data item size • Pick join orderings to minimize the size of intermediate results • execute selective joins starvation: every data item is eventually processed • Ensure each worker is qualified: if load balancing is applied after fission, each instance must be capable of processing each item and have access to
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    element of the source DStream through a given function. ▶ flatMap • Similar to map, but each input item can be mapped to 0 or more output items. ▶ filter • Returns a new DStream by selecting only the element of the source DStream through a given function. ▶ flatMap • Similar to map, but each input item can be mapped to 0 or more output items. ▶ filter • Returns a new DStream by selecting only the element of the source DStream through a given function. ▶ flatMap • Similar to map, but each input item can be mapped to 0 or more output items. ▶ filter • Returns a new DStream by selecting only the
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
SkewmitigationCS591K1DataStreamProcessingandAnalyticsSpring2020StreaminglanguagesoperatorsemanticsIntroductiontoApacheFlinkKafkainprocessingfundamentalsoptimizationsScalableSpark
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩