积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)Apache Flink(22)

语言

全部英语(20)中文(简体)(2)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/28: Graph Streaming ??? Vasiliki Kalavri | Boston University 2020 Modeling the world as a graph 2 Social networks friend follows The web Actor-movie results for the search term “graph” ??? Vasiliki Kalavri | Boston University 2020 Basics 1 5 4 3 2 “node” or “vertex” “edge” 1 5 4 3 2 undirected graph directed graph 4 ??? Vasiliki Kalavri Kalavri | Boston University 2020 Graph streams Graph streams model interactions as events that update an underlying graph structure 5 Edge events: A purchase, a movie rating, a like on an online post
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    up an environment to develop Flink programs • Implement streaming data processing pipelines • Flink managed state • Event time Streaming in Apache Flink • Streams are natural • Events of any type
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Scalable Stream Processing - Spark Streaming and Flink Amir H. Payberah payberah@kth.se 05/10/2018 The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Spark streaming ▶ Flink 4 / 79 Spark Streaming 5 / 79 Contribution ▶ Design issues • Continuous vs. micro-batch processing • Record-at-a-Time vs. declarative APIs 6 / 79 Spark Streaming ▶ Run Run a streaming computation as a series of very small, deterministic batch jobs. • Chops up the live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    4/14: Stream processing optimizations ??? Vasiliki Kalavri | Boston University 2020 2 • Costs of streaming operator execution • state, parallelism, selectivity • Dataflow optimizations • plan translation basics 3 source sink input port output port dataflow graph ??? Vasiliki Kalavri | Boston University 2020 Revisiting the basics 4 Dataflow graph • operators are nodes, data channels are edges • ??? Vasiliki Kalavri | Boston University 2020 12 • What does efficient mean in the context of streaming? • queries run continuously • streams are unbounded • In traditional ad-hoc database queries
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri
 vkalavri@bu.edu CS 591 K1: Data Stream Processing and Analytics Spring 2020 2/04: Streaming languages and operator semantics Vasiliki Kalavri | Boston University 2020 Vasiliki Kalavri | Boston interval of 5–15 s) by an item of type C with Z < 5. 8 Vasiliki Kalavri | Boston University 2020 Streaming Operators 9 Vasiliki Kalavri | Boston University 2020 Operator types (I) • Single-Item Operators println!("seen: {:?}", x))
 .connect_loop(handle);
 }); t (t, l1) (t, (l1, l2)) Streaming Iteration Example Terminate after 100 iterations Create the feedback loop 13 Vasiliki Kalavri
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    relatively static and historical data • batched updates during downtimes, e.g. every night Streaming Data Warehouse • low-latency materialized view updates • pre-aggregated, pre-processed streams streams and historical data Data Management Approaches 4 storage analytics static data streaming data Vasiliki Kalavri | Boston University 2020 DBMS vs. DSMS DBMS DSMS Data persistent relations stream can be viewed as a massive, dynamic, one-dimensional vector A[1…N]. The size N of the streaming vector is defined as the product of the attribute domain size(s). Note that N might be unknown
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    4/02: Elasticity policies and state migration ??? Vasiliki Kalavri | Boston University 2020 Streaming applications are long-running • Workload will change • Conditions might change • State is University 2020 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Intuition: use the dataflow graph to extract operator dependencies and system instrumentation to collect accurate, representative University 2020 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Intuition: use the dataflow graph to extract operator dependencies and system instrumentation to collect accurate, representative
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    to congestion control or video streaming in a lower quality. 4 ??? Vasiliki Kalavri | Boston University 2020 https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png Boston University 2020 Rate control • In a network of consumers and producers such as a streaming execution graph with multiple operators, back-pressure has the effect that all operators slow down to processing speed of the slowest consumer. • If the bottleneck operator is far down the dataflow graph, back-pressure propagates to upstream operators, eventually reaching the data stream sources.
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 What is this course about? The design and architecture of modern distributed streaming 4 Fundamental for representing, summarizing, and analyzing data streams Systems Algorithms State management Operator semantics Window optimizations Filtering, counting, sampling Graph streaming algorithms Vasiliki Kalavri | Boston University 2020 Tools Apache Flink: flink.apache.org compare features and processing guarantees of streaming systems • be proficient in using Apache Flink and Kafka to build end-to-end, scalable, and reliable streaming applications • have a solid understanding
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    snapshotting • FIFO reliable channels: no lost or duplicate messages • Strongly connected execution graph: each process can reach every other process in the system • Single initiating process 18 The from a socket? Exactly-once state consistency (in Apache Flink) can be achieved only if all streaming sources are re-settable ??? Vasiliki Kalavri | Boston University 2020 44 • Flink checkpoints are exactly once • Flink’s checkpointing and recovery mechanism only resets the internal state of a streaming application • Some result records might be emitted multiple times to downstream systems 50
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
GraphstreamingalgorithmsCS591K1DataStreamProcessingandAnalyticsSpring2020StreaminginApacheFlinkScalableSparkoptimizationslanguagesoperatorsemanticsprocessingfundamentalsElasticitystatemigrationPartFlowcontrolloadsheddingCourseintroductionExactlyoncefaulttolerance
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩