积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)Apache Flink(21)

语言

全部英语(19)中文(简体)(2)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/28: Stream ingestion and pub/sub systems Streaming sources Files, e.g. transaction logs Sockets IoT devices and sensors Databases Message queues and brokers Where do stream processors read data from? 2 Challenges • can be distributed • out-of-sync sources may produce out-of-order streams • can be connected to the network might process a message out-of-order or twice 14 How can we avoid this? 15 Publish/Subscribe Systems publisher publisher publisher publisher subscriber notify() subscriber notify() subscriber
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Useful in theory for the development of streaming algorithms With limited practical value in distributed, real-world settings Vasiliki Kalavri | Boston University 2020 Cash-Register Model: In this University 2020 Dataflow Streaming Model Vasiliki Kalavri | Boston University 2020 Dataflow Systems Distributed execution Partitioned state Exact results Out-of-order support Single-node execution Synopses Synopses and sketches Approximate results In-order data processing Stream Database Systems 2000 1992 2013 MapReduce 2004 Tapestry NiagaraCQ Aurora TelegraphCQ STREAM Naiad Spark Streaming Samza
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    about? The design and architecture of modern distributed streaming 4 Fundamental for representing, summarizing, and analyzing data streams Systems Algorithms Architecture and design Scheduling streaming systems • be proficient in using Apache Flink and Kafka to build end-to-end, scalable, and reliable streaming applications • have a solid understanding of how stream processing systems work and industry • Learn from experts with decades of hands-on experience in building and using distributed systems and data management platforms • Have fun! 10 Vasiliki Kalavri | Boston University 2020
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Pipeline: A || B Task: B || C Data: A || A ??? Vasiliki Kalavri | Boston University 2020 8 Distributed execution in Flink ??? Vasiliki Kalavri | Boston University 2020 9 Identify the most efficient D A B C D ??? Vasiliki Kalavri | Boston University 2020 22 • Multi-tenancy • in streaming systems that build one dataflow graph for several queries • when applications analyze data streams from Operator Placement for Stream-Processing Systems. ICDE 2006. • Brian Babcock et. al. Chain : Operator Scheduling for Memory Minimization in Data Stream Systems. SIGMOD 2003. • Donald Carney et. al.
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 Today’s topics • High-availability and fault-tolerance in distributed stream processing • Recovery semantics and guarantees • Exactly-once processing in Apache Beam models State in dataflow computations 3 Vasiliki Kalavri | Boston University 2020 4 Distributed streaming systems will fail • how can we guard state against failures and guarantee correct results after University 2020 Further resources • Jeong-Hyon Hwang et al. High-Availability Algorithms for Distributed Stream Processing. (ICDE ’05). • http://cs.brown.edu/research/aurora/hwang.icde05.ha.pdf •
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible the above example, the Python virtual environment is specified via option -pyarch. It will be distributed to the cluster nodes during job execution. It should be noted that option -pyexec is also required environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible the above example, the Python virtual environment is specified via option -pyarch. It will be distributed to the cluster nodes during job execution. It should be noted that option -pyexec is also required environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design Issues ▶ Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs streaming sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources streaming sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ?? Vasiliki Kalavri | Boston University 2020 Batch Graph Processing 9 Batch graph processing systems, such as Apache Graph, GraphX, Pregel, operate offline. They are built to analyze a snapshot of 8 35 How would you implement this in Flink? ??? Vasiliki Kalavri | Boston University 2020 Distributed Stream Connected Components 36 1. partition the edge stream, e.g. by source Id 2. maintain a 1145/2627692.2627694 • Stanton, Isabelle, and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. ACM SIGKDD, 2012. https://www.microsoft.com/en-us/ research/wp-content/uploads/2012/08/kdd325-stanton
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    and stream ingestion 12 ??? Vasiliki Kalavri | Boston University 2020 –Leslie Lamport The distributed snapshot algorithm described here came about when I visited Chandy, who was then at the University RolOIQjOAEPLqAOt9AHxhweIZXeHOk8+K8Ox+z1iWnmDmAP3A+fwCD9I4G We need to retrieve a distributed cut in a system execution that yields a system configuration Validity (safety): Termination is eventually captured A snapshot algorithm attempts to capture a coherent global state of a distributed system ??? Vasiliki Kalavri | Boston University 2020 Snapshotting Protocols p1 p2 p3 C m
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
StreamingestionandpubsubsystemsCS591K1DataProcessingAnalyticsSpring2020processingfundamentalsCourseintroductionStreamingoptimizationsHighavailabilityrecoverysemanticsguaranteesPyFlink1.15Documentation1.16ScalableSparkGraphstreamingalgorithmsExactlyoncefaulttoleranceinApache
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩