积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)Apache Flink(23)

语言

全部英语(20)中文(简体)(3)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    or more streams of possibly different type A series of transformations on streams in Stream SQL, Scala, Python, Rust, Java… ??? Vasiliki Kalavri | Boston University 2020 Logic State Kalavri | Boston University 2020 8 Distributed execution in Flink ??? Vasiliki Kalavri | Boston University 2020 9 Identify the most efficient way to execute a query • There may exist several ways to to execute a computation • query plans, e.g. order of operators • scheduling and placement decisions • different algorithms, e.g. hash-based vs. broadcast join • What does performance depend on?
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    single-pass Updates arbitrary append-only Update rates relatively low high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively high low Useful in theory for the development of streaming algorithms With limited practical value in distributed, real-world settings Vasiliki Kalavri | Boston University 2020 Cash-Register Model: In this • Derived stream: produced by a continuous query and its operators, e.g. total traffic from a source every minute
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible the above example, the Python virtual environment is specified via option -pyarch. It will be distributed to the cluster nodes during job execution. It should be noted that option -pyexec is also required environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible the above example, the Python virtual environment is specified via option -pyarch. It will be distributed to the cluster nodes during job execution. It should be noted that option -pyexec is also required environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    2014 • 柏林工业大学博士生项目 • 基于流式 runtime 的批处理引擎 • 2014 年 8 月份 发布 Flink 0.6.0 Flink 0.7 Runtime Distributed Streaming Dataflow DataStream API Stream Processing DataSet API Batch Processing 2014 年 12 Schedule Task YARN RM K8S RM 增量 Checkpoint 时间 全量状态 增量状态 增量 snapshot 基于 credit 的流控机制 Streaming SQL ------------------------- | USER_SCORES | ------------------------- | User | Score | Time Flink 1.9 的架构变化 Runtime Distributed Streaming Dataflow Query Processor DAG & StreamOperator Local Single JVM Cloud GCE, EC2 Cluster Standalone, YARN Runtime Distributed Streaming Dataflow DataStream
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Built on the Spark SQL engine. ▶ Perform database-like query optimizations. 56 / 79 Programming Model (1/2) ▶ Two main steps to develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 Three classes of operators: • relation-to-relation: similar to standard SQL and define queries over tables. • stream-to-relation: define tables by selecting portions of a • A Blocking query operator can only return answers when it detects the end of its input. • NOT IN, set difference and division, traditional SQL aggregates • A Non-blocking query operator can produce operator, iff F is monotonic with respect to the partial ordering ⊆. A query Q on a stream S can be implemented by a non-blocking query operator iff Q(S) is monotonic with respect to ⊆. The traditional
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Anis Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream processing engines. ICDE 2015. • Mitzenmacher, Michael. The power of two choices in randomized load
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Message queues and brokers Where do stream processors read data from? 2 Challenges • can be distributed • out-of-sync sources may produce out-of-order streams • can be connected to the network search while MBs only offer topic-based subscription. • DB query results depend on a snapshot and clients are not notified if their query result changes later. 13 Message delivery and ordering Acknowledgements applications. 23 Use-cases • Balancing workloads in network clusters • tasks can be efficiently distributed among multiple workers, such as Google Compute Engine instances. • Distributing event notifications
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    5 ??? Vasiliki Kalavri | Boston University 2020 Load shedding as an optimization problem N: query network I: set of input streams with known arrival rates C: system processing capacity H: headroom continuously monitors input rates or other system metrics and can access information about the running query plan • It detects overload and decides what actions to take in order to maintain acceptable latency Fast approximate answers … S1 S2 Sr Input Manager Scheduler QoS Monitor Load Shedder Query Execution Engine Qm Q2 Q1 Ad-hoc or continuous queries Input streams … ??? Vasiliki Kalavri
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020processingfundamentalsPyFlink1.15Documentation1.16Apache过去现在未来ScalableSparklanguagesoperatorsemanticsSkewmitigationingestionpubsubsystemsFlowcontrolloadshedding
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩