积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(12)中文(简体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/09: Flow control and load shedding ??? Vasiliki Kalavri | Boston University 2020 Keeping up with the producers queue: what if the queue grows larger than available memory? • block the producer (back-pressure, flow control) 2 ??? Vasiliki Kalavri | Boston University 2020 Load management approaches 3 ! Load shedder applications with strict latency constraints that can tolerate approximate results. Slow down the flow of data: • The system buffers excess data for later processing, once input rates stabilize.
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for new data (new row in the automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for new data (new row in the automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for new data (new row in the
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    unblock computations to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt? 12 • Detect environment changes: external workload and system performance unblock computations to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt? Mechanism: How to apply the re-configuration? 12 • Detect environment maintained state • computation: load in terms of computation • communication: load in terms of flow size in the input channel of each parallel task • Partitioning function performance • space required
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    Services O_0 O_1 I_0 I_1 I_2 P_0 P_1 P_2 S_0 S_1 Order Inventory Payment Shipping Flow-Control Async Call Auto Scale State Management Event Driven Flink 的未来 offline Real-time Batch
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    conditions • Provide real-time scheduling information for public transport • Optimize transport network flow and recommend alternative routes Example: • Alibaba City Brain adjusts traffic lights in real-time Boston University 2020 [1, 4, 5, 23, 8, 0, 7] 5 median ‣ We cannot store the entire stream ‣ No control over arrival rate or order f’ ∞ ? Continuously arriving, possibly unbounded data f read write
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    arrival and/or a generation timestamp. • They are produced by external sources, i.e. the DSMS has no control over their arrival order or the data rate. • They have unknown, possibly unbounded length, i are nodes, data channels are edges • channels have FIFO semantics • streams of data elements flow continuously along edges Operators • receive one or more input streams • perform tuple-at-a-time
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    are nodes, data channels are edges • channels have FIFO semantics • streams of data elements flow continuously along edges Operators • receive one or more input streams • perform tuple-at-a-time available cores / threads • Fused operators can share the address space but use separate threads of control • avoid communication cost without losing pipeline parallelism • use a shared buffer for communication
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    results of the computation rather than the execution flow. • Imperative languages are used to describe plans of operators the streams must flow through. • Pattern-based languages specify conditions events in a period during which a user was active 17 Vasiliki Kalavri | Boston University 2020 Flow Management Operators (I) • Join operators merge two streams by matching elements satisfying a condition • it is blocking and must be defined over a window 18 Vasiliki Kalavri | Boston University 2020 Flow Management Operators (II) • Duplicate/Copy Operator replicates a stream, commonly to be used as
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 11 10 8 9 6 7 6 5 watermark record timestamp records 3 Watermarks (in Flink) flow along dataflow edges. They are special records generated by the sources or assigned by the application
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    time rate increase : input rate : throughput ??? Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt? Mechanism: How to apply the re-configuration? 3 • Detect environment to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Automatic Scaling Control 4 ??? Vasiliki Kalavri | Boston University 2020 The automatic scaling problem 5 Given a logical congestion, back pressure, throughput Policy • Queuing theory models: for latency objectives • Control theory models: e.g., PID controller • Rule-based models, e.g. if CPU utilization > 70% => scale
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
FlowcontrolandloadsheddingCS591K1DataStreamProcessingAnalyticsSpring2020ScalableSparkStreamingFlinkFaulttolerancedemoreconfigurationApache过去现在未来CourseintroductionprocessingfundamentalsoptimizationslanguagesoperatorsemanticsNotionsoftimeprogressElasticitystatemigrationPart
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩