积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)Apache Flink(10)

语言

全部英语(10)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    a coordinator or generated periodically • We want to snapshot stream process graphs after the complete computation of an epoch. Epoch Snapshotting 35 ??? Vasiliki Kalavri | Boston University 2020 LWv2vbdeatzXafRQEfoGJ0iG12gDrpFXeQginL0jF7Rm/FkvBjvxsesdcmoZw7QHxifP4y cle0= A epoch-complete consistent cut that includes events that Epoch cuts p4
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    block channels and upstream operators All affected operators block until the reconfiguration is complete • State is scoped to a single task • Each stateful task is responsible for processing and operators can check the frontier (watermark) at the output of the stateful operator to ensure only complete state is migrated Live state migration ??? Vasiliki Kalavri | Boston University 2020 36 control operators can check the frontier (watermark) at the output of the stateful operator to ensure only complete state is migrated Helpers buffer data that cannot yet be safely routed and configuration commands
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    appended to the result table since the last trigger will be written to the external storage. 2. Complete: the entire updated result table will be written to external storage. 3. Update: only the rows appended to the result table since the last trigger will be written to the external storage. 2. Complete: the entire updated result table will be written to external storage. 3. Update: only the rows appended to the result table since the last trigger will be written to the external storage. 2. Complete: the entire updated result table will be written to external storage. 3. Update: only the rows
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Reconfiguring Flink applications ??? Vasiliki Kalavri | Boston University 2020 • A consistent and complete snapshot of an application’s state • Checkpoints are automatically created and removed by Flink the new set of parallel tasks • For exactly-once results, we need to prevent a checkpoint to complete after the savepoint! • Use the integrated savepoint-and-cancel command 15 Scaling from a Savepoint
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    arrival rate or order f’ ∞ ? Continuously arriving, possibly unbounded data f read write Complete data accessible in persistent storage 30 Vasiliki Kalavri | Boston University 2020 Consider
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    add/sort this event into the queue */ /* set an event-time timer for when the stream is complete up to the event-time of this event */ } @Override public void onTimer(long timestamp, OnTimerContext
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    recovery node may need to re-process many tuples • all tuples that contributed to lost state • a complete queue-trimming interval worth of tuples, if level-0 and level-1 acks are periodically transmitted
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    is appended to the stream table? Synopses: Maintain summaries of streaming data instead of the complete history. 29 Vasiliki Kalavri | Boston University 2020 Stream synopses requirements • Single-pass:
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    data items • Batching hurts latency as events can only be processed once the entire batch is complete Batching Profitability A A’ Spark Streaming • Treat streaming computation as a series of deterministic
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ∪τ S = Lτ ∪ Sτ Languages supporting union operators and non-blocking UDAs on data streams are complete, in the sense that they can express every monotonic function on their input. 49 Vasiliki Kalavri
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
ExactlyoncefaulttoleranceinApacheFlinkCS591K1DataStreamProcessingandAnalyticsSpring2020ElasticitystatemigrationPartScalableSparkStreamingFaultdemoreconfigurationCourseintroductionHighavailabilityrecoverysemanticsguaranteesprocessingfundamentalsoptimizationslanguagesoperator
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩