积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)Apache Flink(10)

语言

全部英语(10)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 16 Space requirements ??? Vasiliki Kalavri | Boston University 2020 16 As we read the stream, it is not necessary to store any elements seen: Space requirements ??? Vasiliki seen: • Assume we want to count cardinalities up to 1 billion or 230 with an accuracy of 4%. Space requirements ??? Vasiliki Kalavri | Boston University 2020 16 As we read the stream, it is not necessary 230 with an accuracy of 4%. • The hash value needs to map elements to M = log2(230) = 30 bits. Space requirements ??? Vasiliki Kalavri | Boston University 2020 16 As we read the stream, it is not necessary
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    information reg. future events Publish/Subscribe Systems 17 Pub/Sub levels of de-coupling • Space: interacting parties do not need to know each other • Publishers do not know who / how many subscribers get notified asynchronously while possibly performing some other concurrent action. 18 Paradigm Space Decoupling Time Decoupling Synchronization Decoupling Message-passing RPC/RMI Asynchronous Message Queues Pub/Sub Yes Yes Yes Can you fill this in? 19 Pub/Sub vs. other paradigms Paradigm Space Decoupling Time Decoupling Synchronization Decoupling Message-passing No No Producer-side
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    virtual circuit (VC) or connection. • CFC uses a credit system to signal the availability of buffer space from receivers to senders. ??? Vasiliki Kalavri | Boston University 2020 27 • Senders maintain containing their number of available credits. • One credit corresponds to some amount of buffer space so that a sender can know how much data they can afford to forward downstream. ??? Vasiliki Kalavri
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    pair of addresses at any point in the stream. 13 It is the most general model Hard to develop space-efficient and time-efficient algorithms Vasiliki Kalavri | Boston University 2020 Relational Streaming can be easily updated with a single pass over streaming tuples in their arrival order • Small space: memory footprint poly-logarithmic in the stream size • Low time: fast update and query times
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    it is available for consumption. Records are discarded after their retention time to free up disk space. 22 Vasiliki Kalavri | Boston University 2020 23 Partitions allow the log to scale beyond a size
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    of flow size in the input channel of each parallel task • Partitioning function performance • space required to implement routing • lookup cost • Migration performance • re-assignment computation
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    window and iterate over the list of all collected elements when evaluated: • They require more space but support more complex logic. • ProcessWindowFunction Window functions 14 Vasiliki Kalavri |
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the fault-tolerance mechanism under normal, failure- free operation? • How much memory or disk space is required to maintain input tuples and state? Recovery speed • How long does it take for the
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    according to the number of available cores / threads • Fused operators can share the address space but use separate threads of control • avoid communication cost without losing pipeline parallelism
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    approximation • A small synopsis can provide very accurate approximations using very little space: • It might suffice to know that the true answer is roughly $5 million without knowing that the
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020ingestionpubsubsystemsFlowcontrolloadsheddingprocessingfundamentalsIntroductiontoApacheFlinkKafkaFaulttolerancedemoreconfigurationWindowstriggersHighavailabilityrecoverysemanticsguaranteesStreamingoptimizationsFilteringsamplingstreams
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩