积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)Apache Flink(21)

语言

全部英语(20)中文(简体)(1)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    of length 5. We split the stream into m = 2p = 4 sub-streams. Consider the input elements {5, 14, 5, 2, 8, 1, …} ??? Vasiliki Kalavri | Boston University 2020 11 Stochastic averaging: example Let of length 5. We split the stream into m = 2p = 4 sub-streams. Consider the input elements {5, 14, 5, 2, 8, 1, …} Substream Address Counter S0 00 S1 01 S2 10 S3 11 ??? Vasiliki Kalavri | Boston sub-streams. Consider the input elements {5, 14, 5, 2, 8, 1, …} Substream Address Counter S0 00 S1 01 S2 10 S3 11 • x1=5, h5(5) = 00101 • x2=14, h5(14) = 10110 • x3=5, h5(5) = 00101 •
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    iVe QGhRo9apf3X7CshilYJq3fHc1AQ5VYzgZNKN9OYUjaiA+xYKmMOshnx07IiVX6JEqULWnITP09kdNY63Ec2s6YmqFe9Kbif14nM9FkHOZgYlmy+KMkFMQqafkz5XyIwYW0KZ4vZWwoZUWZsPhUbgrf48jLxG/XLund7VmteF WmU4QiO4RQ8OIcm3EALfGDA4Rle iVe QGhRo9apf3X7CshilYJq3fHc1AQ5VYzgZNKN9OYUjaiA+xYKmMOshnx07IiVX6JEqULWnITP09kdNY63Ec2s6YmqFe9Kbif14nM9FkHOZgYlmy+KMkFMQqafkz5XyIwYW0KZ4vZWwoZUWZsPhUbgrf48jLxG/XLund7VmteF WmU4QiO4RQ8OIcm3EALfGDA4Rle iVe QGhRo9apf3X7CshilYJq3fHc1AQ5VYzgZNKN9OYUjaiA+xYKmMOshnx07IiVX6JEqULWnITP09kdNY63Ec2s6YmqFe9Kbif14nM9FkHOZgYlmy+KMkFMQqafkz5XyIwYW0KZ4vZWwoZUWZsPhUbgrf48jLxG/XLund7VmteF WmU4QiO4RQ8OIcm3EALfGDA4Rle
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    ............................. 14 4.8.1 currentProcessingTime - currentOutputWatermark > threshold.................................................................... 14 4.9 "Keeping Up"............. ........................... 14 4.10 关键指标 .............................................................................................................................. 14 4.11 可能的报警条件 .............. ............................. 14 4.12 Monitoring Latency.............................................................................................................. 14 4.12.1 Key Metrics .........
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    s=0.5 c=5 s=1.0 12.5 L2=18.75 O2 I1 c=10
 s=0.5 c=10 s=0.8 c=5 s=1.0 O1 c=10 s=0.9 5 14 5 5 19 5 ??? Vasiliki Kalavri | Boston University 2020 13 I2 c=10
 s=0.7 c=10 s=0.5 c=5 s=1.0 12.5 L2=18.75 O2 I1 c=10
 s=0.5 c=10 s=0.8 c=5 s=1.0 O1 c=10 s=0.9 L1=26.5 5 14 5 5 19 5 ??? Vasiliki Kalavri | Boston University 2020 13 I2 c=10
 s=0.7 c=10 s=0.5 c=5 s=1 s=1.0 12.5 L2=18.75 O2 I1 c=10
 s=0.5 c=10 s=0.8 c=5 s=1.0 O1 c=10 s=0.9 L1=26.5 5 14 5 5 19 5 r1=10 r/s r2=20 r/s ??? Vasiliki Kalavri | Boston University 2020 13 I2 c=10
 s=0.7
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    size, e.g. s elements. 14 ??? Vasiliki Kalavri | Boston University 2020 Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements. 14 How can we continuously Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements. 14 How can we continuously maintain a representative fixed-size sample of the stream so far? At all Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements. 14 How can we continuously maintain a representative fixed-size sample of the stream so far? At all
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    import Schema from pyflink.table.table_descriptor import TableDescriptor (continues on next page) 14 Chapter 1. How to build docs locally pyflink-docs, Release release-1.15 (continued from previous Table also provides the conversion back to a pandas DataFrame to leverage pandas API. [14]: table.to_pandas() [14]: id data 0 1 Hi 1 2 Hello 16 Chapter 1. How to build docs locally pyflink-docs, Release (continued from previous page) 11 12 # create python virtual environment 13 ./miniconda.sh -b -p venv 14 15 # activate the conda python virtual environment 16 source venv/bin/activate "" 17 18 # specify
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    import Schema from pyflink.table.table_descriptor import TableDescriptor (continues on next page) 14 Chapter 1. How to build docs locally pyflink-docs, Release release-1.16 (continued from previous Table also provides the conversion back to a pandas DataFrame to leverage pandas API. [14]: table.to_pandas() [14]: id data 0 1 Hi 1 2 Hello 16 Chapter 1. How to build docs locally pyflink-docs, Release (continued from previous page) 11 12 # create python virtual environment 13 ./miniconda.sh -b -p venv 14 15 # activate the conda python virtual environment 16 source venv/bin/activate "" 17 18 # specify
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Source 10 12 10 18 23 11 15 11 15 event time watermark 15 14 20 • The input watermark captures the progress of upstream stages • minimum of output watermarks timestamp T indicates that all subsequent records should have timestamps > T. Watermark properties 14 Vasiliki Kalavri | Boston University 2020 Watermarks are essential to both event-time windows and event-time windows Vasiliki Kalavri | Boston University 2020 16 http://streamingbook.net/fig/3-2 14 Vasiliki Kalavri | Boston University 2020 Watermarks provide a configurable trade-off between results
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    serialization send message waiting waiting 13 ??? Vasiliki Kalavri | Boston University 2020 14 o1 src o2 back-pressure target: 40 rec/s 10 rec/s 100 rec/s Which operator is the bottleneck? What if we scale ο1 x 4? How much to scale ο2? ??? Vasiliki Kalavri | Boston University 2020 14 o1 src o2 back-pressure target: 40 rec/s 10 rec/s 100 rec/s Which operator is the bottleneck? What waiting for output waiting for input src o1 o2 ??? Vasiliki Kalavri | Boston University 2020 14 o1 src o2 back-pressure target: 40 rec/s 10 rec/s 100 rec/s Which operator is the bottleneck?
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Short recovery time • High runtime overhead • The checkpoint interval determines the trade-off 14 Ni primary secondary I1 O1 N’i update checkpoint send state Vasiliki Kalavri | Boston University Short recovery time • High runtime overhead • The checkpoint interval determines the trade-off 14 Ni primary secondary I1 O1 N’i update checkpoint send state Can you see any disadvantage in
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020ExactlyoncefaulttoleranceinApacheFlink监控应用程序应用程序入门FlowcontrolloadsheddingFilteringsamplingstreamsPy1.15Documentation1.16NotionsoftimeprogressElasticitystatemigrationPartHighavailabilityrecoverysemanticsguarantees
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩