积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)Apache Flink(14)

语言

全部英语(14)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    4 Vasiliki Kalavri | Boston University 2020 Select IStream(*) From S1 [Rows 5], S2 [Rows 10] Where S1.A = S2.A Last 5 elements of stream S1 and last 10 elements of S2 stream-to-relation relation-to-relation Boston University 2020 Model and formalization (I) A stream is a sequence of unbounded length, where tuples are ordered by their arrival time. Sequence: Let t1, … ,tn be tuples from a relation R. that produced till step k. 27 Vasiliki Kalavri | Boston University 2020 A null operator N is one where N(S) = [ ] for every S. A non-null operator G is • blocking, when for every sequence S of length
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    H. Payberah payberah@kth.se 05/10/2018 The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design Issues ▶ Continuous vs. micro-batch processing new DStream of (K, V) pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream of (K, Long) pairs where the value of each key is its new DStream of (K, V) pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream of (K, Long) pairs where the value of each key is its
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    When to shed load? • detect overload quickly to avoid latency increase • monitor input rates • Where in the query plan? • dropping at the sources vs. dropping at bottleneck operators • How much load Kalavri | Boston University 2020 Reacting to overload • Where in the query plan to drop tuples, which tuples, and how many • The question of where is equivalent to placing special drop operators in the known aggregation functions, results can be scaled using approximate query processing techniques, where accuracy is measured in terms of relative error in the computed query answers. 17 ??? Vasiliki
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    summarizes the basic steps required to setup and get started with PyFlink. There are live notebooks where you can try PyFlink out without any other step: • Live Notebook: Table • Live Notebook: DataStream PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible and useful when it’s not the Python environments in advance on the cluster nodes or when there are some special requirements where the pre-installed Python environments could not meet. ./bin/flink run \ --jobmanager :8081
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    summarizes the basic steps required to setup and get started with PyFlink. There are live notebooks where you can try PyFlink out without any other step: • Live Notebook: Table • Live Notebook: DataStream PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible and useful when it’s not the Python environments in advance on the cluster nodes or when there are some special requirements where the pre-installed Python environments could not meet. ./bin/flink run \ --jobmanager :8081
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    IP connections that are currently active 10 The vector is updated by a continuous stream events where the jth update has the general form (k, c[j]) and modifies the kth entry of A with the operation e.g. a sequence of (finite) relation states over a common schema R: [r1(R), r2(R), ..., ], where the individual relations are unordered sets. src dest bytes 1 2 20K 2 5 32K 1 2 28K {(1, 2, 20K) • as the concatenation of serializations of the relations. • as a list of tuple-index pairs, where indicates that t ∈ rj • as a serialization of r1 followed by a series of delta tuples that
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    At all times, we want the following property to hold: an element is in S with probability s/n, where n is the total number of stream elements seen so far. ??? Vasiliki Kalavri | Boston University 2020 At all times, we want the following property to hold: an element is in S with probability s/n, where n is the total number of stream elements seen so far. As if we could keep all n elements and at 24 • A bit array of size n, where n is generally higher than the expected number of elements in the input • k independent and uniformly distributed hash functions, where k << n The Bloom filter n
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    stocks priced between $20 and $200, where the spread between the high tick and the low tick over the past 30 minutes is greater than 3% of the last price, and where in the last 5 minutes the average
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 Let h be a hash function that maps each stream element into M = log2N bits, where N is the domain of input elements: For each element x, let rank(x) be the number of 0s in the (i0i1 . . . iM−1)2, ik ∈ {0,1} j = (i0i1 . . . ip−1)2 For we select one of m counters COUNT[j], where ??? Vasiliki Kalavri | Boston University 2020 11 Stochastic averaging: example Let M = 5, p = 2
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    4 Vasiliki Kalavri | Boston University 2020 • Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
StreaminglanguagesandoperatorsemanticsCS591K1DataStreamProcessingAnalyticsSpring2020ScalableSparkFlinkFlowcontrolloadsheddingPy1.15Documentation1.16processingfundamentalsFilteringsamplingstreamsCourseintroductionCardinalityfrequencyestimationNotionsoftimeprogress
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩