积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)Apache Flink(16)

语言

全部英语(12)中文(简体)(4)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs 3 / 79 Outline ▶ Spark streaming ▶ Flink 4 / 79 Spark Streaming 5 / 79 Contribution ▶ Design issues • Continuous vs. micro-batch micro-batch processing • Record-at-a-Time vs. declarative APIs 6 / 79 Spark Streaming ▶ Run a streaming computation as a series of very small, deterministic batch jobs. • Chops up the live stream into function is executed in the driver process. 31 / 79 Output Operations (2/4) ▶ What’s wrong with this code? ▶ This requires the connection object to be serialized and sent from the driver to the worker.
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    ‘int’ object has no attribute ‘encode’ . . . . . . . . . . . . . . 32 1.3.6.3 Q3: Types.BIG_INT() VS Types.LONG() . . . . . . . . . . . . . . . . . . . . . . 32 1.4 API reference . . . . . . . . . . "/Users/dianfu/code/src/github/pyflink-faq/testing/test_utils.py", line 122, in␣ ˓→setUp self.t_env = TableEnvironment.create(EnvironmentSettings.in_streaming_mode()) File "/Users/dianfu/code/src/github in in_streaming_mode get_gateway().jvm.EnvironmentSettings.inStreamingMode()) File "/Users/dianfu/code/src/github/pyflink-faq/testing/.venv/lib/python3.8/site- ˓→packages/apache_flink-1.14.4-py3.8-macosx-10
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    ‘int’ object has no attribute ‘encode’ . . . . . . . . . . . . . . 32 1.3.6.3 Q3: Types.BIG_INT() VS Types.LONG() . . . . . . . . . . . . . . . . . . . . . . 32 1.4 API reference . . . . . . . . . . "/Users/dianfu/code/src/github/pyflink-faq/testing/test_utils.py", line 122, in␣ ˓→setUp self.t_env = TableEnvironment.create(EnvironmentSettings.in_streaming_mode()) File "/Users/dianfu/code/src/github in in_streaming_mode get_gateway().jvm.EnvironmentSettings.inStreamingMode()) File "/Users/dianfu/code/src/github/pyflink-faq/testing/.venv/lib/python3.8/site- ˓→packages/apache_flink-1.14.4-py3.8-macosx-10
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Outcomes At the end of the course, you will hopefully: • know when to use stream processing vs other technology • be able to comprehensively compare features and processing guarantees of streaming Deliverables • One (1) written report of maximum 5 pages (10%). • Code (including pre-processing, deployment, and testing): (40%) • code deliverables must be accompanied by documentation 8 Vasiliki Kalavri
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    4 storage analytics static data streaming data Vasiliki Kalavri | Boston University 2020 DBMS vs. DSMS DBMS DSMS Data persistent relations streams Data Access random sequential, single-pass Updates continuous Latency relatively high low 5 Vasiliki Kalavri | Boston University 2020 Traditional DW vs. SDW Traditional DW SDW Update Frequency low high Update propagation synchronized asynchronous stream is interpreted as describing a changing relation. • Stream elements bear a valid timestamp, Vs, after which they are considered valid and they can contribute to the result. • alternatively,
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 【05 计算平台 蓉荣】Flink 批处理及其应⽤

    为什什么Flink能做批处理理 Table Stream Bounded Data Unbounded Data SQL Runtime SQL ⾼高吞吐 低延时 Hive vs. Spark vs. Flink Batch Hive/Hadoop Spark Flink 模型 MR MR(Memory/Disk) Pipeline 吞吐 TB-PB TB-PB 未经⼤大规模⽣生产验证 HiveSQL SparkSQL ANSI SQL 易易⽤用性 ⼀一般 易易⽤用 ⼀一般 ⼯工具/⽣生态 ⼀一般 丰富 ⼀一般 Flink Batch应⽤用 - 数据湖 Data Lake vs. Data Warehouse Flink Batch应⽤用 - 数据湖 Flink Batch应⽤用 - 数据湖 Blink SQL+UDF Queue 存储类 存储 计算 存储
    0 码力 | 12 页 | 1.44 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    message broker delivers messages to all subscribed consumers in a broadcast fashion. 11 12 Brokers vs. Databases • DBs keep data until explicitly deleted while MBs delete messages once consumed. • Asynchronous RPC Futures Message Queues Pub/Sub Yes Yes Yes Can you fill this in? 19 Pub/Sub vs. other paradigms Paradigm Space Decoupling Time Decoupling Synchronization Decoupling Message-passing consumer had read messages later than its recorded offset How can we avoid re-processing? 30 Logs vs. in-memory brokers • Multiple consumers with different processing speeds: reading a message doesn't
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    order of operators • scheduling and placement decisions • different algorithms, e.g. hash-based vs. broadcast join • What does performance depend on? • input data, intermediate data • operator plans • minimize intermediate data and communication Alternatives • data structures • sorting vs hashing • indexing, pre-fetching • minimize disk access • scheduling Objectives • optimize equivalent computation • Ensure mergeable state: even a simple counter might differ on a combined stream vs. on separate streams Redundancy elimination Eliminate redundant operations, aka subgraph sharing
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    WindowedStream (or AllWindowedStream) and processes the elements assigned to a window. 5 Keyed vs. non-keyed windows Vasiliki Kalavri | Boston University 2020 // define a keyed window operator stream specify the window assigner .reduce/aggregate/process(...) // specify the window function 6 Keyed vs. non-keyed windows Vasiliki Kalavri | Boston University 2020 Time-based window assigners for the
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    extractTimestamp(MyEvent event) { return element.getCreationTime(); } } Windows (Not the OS) Global Vs Keyed Windows stream. .keyBy() .window() .reduce|aggregate|process(
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinkPy1.15Documentation1.16CourseintroductionCS591K1DataAnalyticsSpring2020processingfundamentals处理批处理及其ingestionpubsubsystemsoptimizationsWindowstriggersinApache
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩