积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)Apache Flink(15)

语言

全部英语(13)中文(简体)(2)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 监控Apache Flink应用程序(入门)

    ..................................................................................... 16 4.13.1 Memory................................................................................................. 7/ops/config.html#configuring-the-network-buffers 8 https://www.da-platform.com/blog/manage-rocksdb-memory-size-apache-flink? __hstc=216506377.c9dc814ddd168ffc714fc8d2bf20623f. 1550652804788.1550652804788 metrics you want to look at are memory consumption and CPU load of your Task- & JobManager JVMs. 4.13.1 Memory Flink reports the usage of Heap, NonHeap, Direct & Mapped memory for JobManagers and TaskManagers
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    integer ru between 0 and 9 and add the user to the sample if ru = 0. Do we need to keep all users in memory? ??? Vasiliki Kalavri | Boston University 2020 We can use a hash function h to hash the user name Kalavri | Boston University 2020 28 Assume we expect around 1 billion elements and we have a fixed memory budget of 512MB • How many hash functions to use? • What would be the false positive rate? Kalavri | Boston University 2020 28 Assume we expect around 1 billion elements and we have a fixed memory budget of 512MB • How many hash functions to use? • What would be the false positive rate?
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    environments to use. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -pyclientexec could not meet. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -Dyarn.shi following: ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -Dyarn.shi
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    environments to use. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -pyclientexec could not meet. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -Dyarn.shi following: ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -Dyarn.shi
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    e.g. a distributed filesystem or a database system • Available state backends in Flink: • In-memory • File system • RocksDB State backends 7 Vasiliki Kalavri | Boston University 2020 MemoryStateBackend latencies • OutOfMemoryError if large grows too large, GC pauses • Checkpoints sent to JobManager's heap memory, i.e. the state is lost in case of failure • Use only for development and debugging purposes! FsStateBackend TaskManager’s heap but checkpoints it to a remote file system • In-memory speed for local accesses and fault tolerance • Limited to TaskManager’s memory and might suffer from GC pauses Which backend to choose?
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the graph from disk and partition it in memory 10 ??? Vasiliki Kalavri | Boston University 2020 1. Load: read the graph from disk and partition it in memory 2. Compute: read and mutate the graph and partition it in memory 2. Compute: read and mutate the graph state 11 ??? Vasiliki Kalavri | Boston University 2020 1. Load: read the graph from disk and partition it in memory 2. Compute: read Lorenzo De, et al. Triest: Counting local and global triangles in fully dynamic streams with fixed memory size. TKDD 2017. https://www.kdd.org/ kdd2016/papers/files/rfp0465-de-stefaniA.pdf Further reading
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    entire stream in an accessible way • we have to process stream elements on-the-fly using limited memory 2 Vasiliki Kalavri | Boston University 2020 Properties of data streams • They arrive continuously ins_r(P) ^ j.A ≠ i.A}). 28 Vasiliki Kalavri | Boston University 2020 Query processing challenges • Memory requirements: we cannot store the whole stream history. • Data rate: we cannot afford to continuously easily updated with a single pass over streaming tuples in their arrival order • Small space: memory footprint poly-logarithmic in the stream size • Low time: fast update and query times • Delete-proof:
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    cost against resource utilization • Operators on the same host compete for resources, e.g. memory and CPU Operator placement D A B C E D A B C E Profitability ??? Vasiliki Kalavri | Boston Avoid race conditions: either ensure the data is immutable or synchronize access to state. • Manage memory safely: reclaiming and growing without bounds. State sharing Avoid unnecessary data copies B A series of deterministic batch computations on small time intervals • Keep intermediate state in memory • Use Spark's RDDs instead of replication • Parallel recovery mechanism in case of failures 44
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    associated with a Receiver object. • It receives the data from a source and stores it in Spark’s memory for processing. ▶ Three categories of streaming sources: 1. Basic sources directly available in associated with a Receiver object. • It receives the data from a source and stores it in Spark’s memory for processing. ▶ Three categories of streaming sources: 1. Basic sources directly available in Sources (2/3) class CustomReceiver(host: String, port: Int) extends Receiver[String](StorageLevel.MEMORY_AND_DISK_2) with Logging { def onStart() { new Thread("Socket Receiver") { override def run() {
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    rate? • drop messages • buffer messages in a queue: what if the queue grows larger than available memory? 2 ??? Vasiliki Kalavri | Boston University 2020 Keeping up with the producers • Producers can rate? • drop messages • buffer messages in a queue: what if the queue grows larger than available memory? • block the producer (back-pressure, flow control) 2 ??? Vasiliki Kalavri | Boston University
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
监控ApacheFlink应用程序应用程序入门FilteringandsamplingstreamsCS591K1DataStreamProcessingAnalyticsSpring2020Py1.15Documentation1.16StatemanagementGraphstreamingalgorithmsprocessingfundamentalsStreamingoptimizationsScalableSparkFlowcontrolloadshedding
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩