积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)Apache Flink(22)

语言

全部英语(21)中文(简体)(1)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    maintain a representative fixed-size sample of the stream so far? At all times, we want the following property to hold: an element is in S with probability s/n, where n is the total number of stream elements maintain a representative fixed-size sample of the stream so far? At all times, we want the following property to hold: an element is in S with probability s/n, where n is the total number of stream elements
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    characteristic to tell Flink how to define time when you are creating windows. The time characteristic is a property of the StreamExecutionEnvironment: Configuring a time characteristic 4 object AverageSensorReadings
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    analytics in one-pass? ??? Vasiliki Kalavri | Boston University 2020 Connectivity & Bipartite property 23 ??? Vasiliki Kalavri | Boston University 2020 Streaming Connected Components • State: a disjoint
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Mechanism: How to apply the re-configuration? 3 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions processing a tuple and all its derived results • Policy • each operator as a single-server queuing system • generalized Jackson networks • Action • predictive, at-once for all operators ??? Vasiliki processing a tuple and all its derived results • Policy • each operator as a single-server queuing system • generalized Jackson networks • Action • predictive, at-once for all operators Too fine-grained
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    latency constraints that can tolerate approximate results. Slow down the flow of data: • The system buffers excess data for later processing, once input rates stabilize. • Requires a persistent process of discarding data when input rates increase beyond system capacity. • Load shedding techniques operate in a dynamic fashion: the system detects an overload situation during runtime and selectively streams with known arrival rates C: system processing capacity H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state Load(N(I)): the load
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    ....................................................................................... 22 4.14 System Resources....................................................................................... is processed by Apache Flink, which then writes the results to a database or calls a downstream system. In such a pipeline, latency can be introduced at each stage and for various reasons including the TaskManager (in case of a containerized setup), or by providing more TaskManagers. In general, a system already running under very high load during normal operations, will need much more time to catch-up
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    & reconfiguration ??? Vasiliki Kalavri | Boston University 2020 • To recover from failures, the system needs to • restart failed processes • restart the application and recover its state 2 Checkpointing and all required metadata, such as the application’s JAR file, into a remote persistent storage system • Zookeeper also holds state handles and checkpoint locations 5 JobManager failures ??? Vasiliki Vasiliki Kalavri | Boston University 2020 12 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    retrieve a distributed cut in a system execution that yields a system configuration Validity (safety): Termination (liveness): Obtain a valid system configuration A full system configuration is eventually eventually captured A snapshot algorithm attempts to capture a coherent global state of a distributed system ??? Vasiliki Kalavri | Boston University 2020 Snapshotting Protocols p1 p2 p3 C m system execution that yields a system configuration Validity (safety): Termination (liveness): Obtain a valid system configuration A full system configuration is eventually
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    types • The system is unaware of which parts of an operator constitute state Streaming state 3 • Explicit state primitives including state types and interfaces • The system is aware of state persistent storage, e.g. a distributed filesystem or a database system • Available state backends in Flink: • In-memory • File system • RocksDB State backends 7 Vasiliki Kalavri | Boston University purposes! FsStateBackend • Stores state on TaskManager’s heap but checkpoints it to a remote file system • In-memory speed for local accesses and fault tolerance • Limited to TaskManager’s memory and might
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    broker: a system that connects event producers with event consumers. • It receives messages from the producers and pushes them to the consumers. • A TCP connection is a simple messaging system which which connects one sender with one recipient. • A general messaging system connects multiple producers to multiple consumers by organizing messages into topics. 7 Message Broker producer producer Logging to multiple systems • a Google Compute Engine instance can write logs to the monitoring system, to a database for later querying, and so on. • Data streaming from various processes or devices
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
FilteringandsamplingstreamsCS591K1DataStreamProcessingAnalyticsSpring2020WindowstriggersGraphstreamingalgorithmsElasticitystatemigrationPartFlowcontrolloadshedding监控ApacheFlink应用程序应用程序入门FaulttolerancedemoreconfigurationExactlyoncefaultinStatemanagementingestionpubsubsystems
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩