积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Apache Flink(9)

语言

全部英语(9)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    stream S1 and stream S2 11 Vasiliki Kalavri | Boston University 2020 Operator types (II) • Sequence Operators capture the arrival of an ordered set of events. • common in pattern languages • events stream is a sequence of unbounded length, where tuples are ordered by their arrival time. Sequence: Let t1, … ,tn be tuples from a relation R. The list S = [t1, … ,tn] is called a sequence, of length The empty sequence [ ] has length 0. We use t ∈ S to denote that, for some 1 ≤ i ≤ n, ti = t. 23 Vasiliki Kalavri | Boston University 2020 Model and formalization (II) Pre-sequence (prefix): Let
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    we observe the entries of A by increasing index. This can model time-series data streams: • a sequence of measurements from a temperature sensor • the volume of NASDAQ stock trades over time This Stream denotation An abstract interpretation of the stream as a mathematical structure, e.g. a sequence of (finite) relation states over a common schema R: [r1(R), r2(R), ..., ], where the individual 20K), (2, 5, 32K), (1, 2, 28K)} 25 Vasiliki Kalavri | Boston University 2020 Such a relation sequence could be represented in various ways: • as the concatenation of serializations of the relations
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Processing (DStream) 7 / 79 DStream (1/2) ▶ DStream: sequence of RDDs representing a stream of data. 8 / 79 DStream (1/2) ▶ DStream: sequence of RDDs representing a stream of data. 8 / 79 DStream consistent checkpoints. 74 / 79 Summary 75 / 79 Summary ▶ Spark • Mini-batch processing • DStream: sequence of RDDs • RDD and window operations • Structured streaming ▶ Flink • Unified batch and stream
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    durably store all events in a sequential (possibly partitioned) log • A log is an append-only sequence of records on disk • a producer generates messages by simply appending them to the log and a partitions • Within each partition, every message carries an offset, a monotonically increasing sequence number • Within a partition, all messages are totally ordered but there is no ordering guarantee
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    random_source ( id TINYINT, data STRING ) WITH ( 'connector' = 'datagen', 'fields.id.kind' = 'sequence', 'fields.id.start' = '1', 'fields.id.end' = '2', 'fields.data.kind' = 'random' ) """) table = table_env.from_descriptor( TableDescriptor .for_connector('datagen') .option('fields.id.kind', 'sequence') .option('fields.id.start', '1') .option('fields.id.end', '2') .option('fields.data.kind', 'random')
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    random_source ( id TINYINT, data STRING ) WITH ( 'connector' = 'datagen', 'fields.id.kind' = 'sequence', 'fields.id.start' = '1', 'fields.id.end' = '2', 'fields.data.kind' = 'random' ) """) table = table_env.from_descriptor( TableDescriptor .for_connector('datagen') .option('fields.id.kind', 'sequence') .option('fields.id.start', '1') .option('fields.id.end', '2') .option('fields.data.kind', 'random')
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    each topic, the Kafka cluster maintains a partitioned log. Each partition is an ordered, immutable sequence of records that is continually appended to—a structured commit log. An offset is a sequential
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    deterministic: it produces the same output when starting from the same initial state and given the same sequence of input tuples • convergent-capable: it can re-build internal state in a way that it eventually
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Preliminaries ??? Vasiliki Kalavri | Boston University 2020 8 Some algorithms model graph streams a sequence of vertex events. A vertex stream consists of events that contain a vertex and all of its neighbors
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
StreaminglanguagesandoperatorsemanticsCS591K1DataStreamProcessingAnalyticsSpring2020processingfundamentalsScalableSparkFlinkingestionpubsubsystemsPy1.15Documentation1.16IntroductiontoApacheKafkaHighavailabilityrecoveryguaranteesGraphstreamingalgorithms
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩