积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(11)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.090 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    streaming sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g g., user-provided sources. 13 / 79 Input Operations ▶ Every input DStream is associated with a Receiver object. • It receives the data from a source and stores it in Spark’s memory for processing. streaming sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/28: Stream ingestion and pub/sub systems Streaming sources Files, e.g. transaction logs Sockets IoT devices and sensors Databases and KV stores Message Where do stream processors read data from? 2 Challenges • can be distributed • out-of-sync sources may produce out-of-order streams • can be connected to the network • latency and unpredictable processor should be able to make progress • might fail (or seem as if they failed) Streaming sources… 3 Producers and consumers • An event is typically generated by a producer (or publisher or sender)
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    avoid latency increase • monitor input rates • Where in the query plan? • dropping at the sources vs. dropping at bottleneck operators • How much load to shed? • enough for the system to keep-up applies shedding to entire windows instead of individual tuples • When discarding tuples at the sources or another point in a query with multiple window aggregations, it is unclear how shedding will affect dataflow graph, back-pressure propagates to upstream operators, eventually reaching the data stream sources. • To ensure no data loss, a persistent input message queue, such as Kafka, and enough storage
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    a-priori. • They bear an arrival and/or a generation timestamp. • They are produced by external sources, i.e. the DSMS has no control over their arrival order or the data rate. • They have unknown University 2020 Lecture references Some material in this lecture was assembled from the following sources: • Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data Stream Management: Processing
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    Latency Tracking4. When enabled, Flink will insert so-called latency markers periodically at all sources. For each sub-task, a latency distribution from each source to this operator will be reported. The significantly impact the performance of the cluster. It is recommended to only enable it to locate sources of latency during debugging. 4.12.1 Key Metrics Metric Scope Description latency
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    dataflow graph for several queries • when applications analyze data streams from a small set of sources • Operator elimination • remove a no-op, e.g. a projection that keeps all attributes • remove • Statis Viglas and Jeffrey Naughton. Rate-based Query Optimization for Streaming Information Sources. SIGMOD 2002. Further reading
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 The automatic scaling problem 5 Given a logical dataflow with sources S1, S2, … Sn and rates λ1, λ2, … λn identify the minimum parallelism πi per operator i, such • assign an increasing sequential id to all operators in topological order, starting from the sources • represent as an adjacency matrix A • Aij = 1 iff operator i is upstream neighbor of j 17
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    is satisfied if initiator can reach all tasks (possible in DAGs via multiple initiators, e.g., sources.) p1 p2 p3 p4 p5 p6 p7 p7 p5 p6 p1 p2 p3 p4 34 ??? Vasiliki Kalavri | Boston University 2020 checkpoint. 3. Resume processing. ??? Vasiliki Kalavri | Boston University 2020 Re-settable sources • All input streams are reset to the position up to which they were consumed when the checkpoint previous offset of the stream. 43 ??? Vasiliki Kalavri | Boston University 2020 Re-settable sources • All input streams are reset to the position up to which they were consumed when the checkpoint
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Watermarks (in Flink) flow along dataflow edges. They are special records generated by the sources or assigned by the application. A watermark for time T states that event time has progressed to
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    18 Vasiliki Kalavri | Boston University 2020 Can you give me some examples of streaming data sources? 19 Vasiliki Kalavri | Boston University 2020 20 Location-based services Vasiliki Kalavri | Boston
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinkingestionpubsubsystemsCS591K1DataAnalyticsSpring2020Flowcontrolloadsheddingprocessingfundamentals监控Apache应用程序应用程序入门optimizationsElasticitystatemigrationPartExactlyoncefaulttoleranceinNotionsoftimeprogressCourseintroduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩