积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(11)中文(简体)(2)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • minimize performance disruption, e.g. latency spikes • avoid introducing load imbalance • Resource management • utilization, isolation • Automation • continuous monitoring • bottleneck detection State is mapped into key-groups • Key-groups are mapped to subtasks as ranges • On restore, reads are sequential within each key-group, and often across multiple key-groups • The metadata of key-group-to-subtask No need to maintain explicit lists of key-groups, only range boundaries. • The maximum parallelism parameter of an operator defines the number of key groups into which the keyed state of the operator
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/stream/operators/#task-chaining-and-resource-groups 4 进度和吞吐量监控 知道您的应用程序正在运行并且检查点正常工作是件好事,但是它并不能告诉您应用程序是否正在实际取得进 展并与上游系统保持同步。 4.1 吞吐量 Flink提供 overall memory consumption of the Job- and TaskManager containers to ensure they don’t exceed their resource limits. This is particularly important, when using the RocksDB statebackend, since RocksDB allocates Flink processes alone. System resource monitoring is disabled by default and requires additional dependencies on the classpath. Please check out the Flink system resource metrics documentation9 for additional
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    hashing • indexing, pre-fetching • minimize disk access • scheduling Objectives • optimize resource utilization or minimize resources • decrease latency, increase throughput • minimize monetary Kalavri | Boston University 2020 28 Safety • Ensure resource kinds: all resources required by a fused operator should remain available. • Ensure resource amounts: the total amount of resources required by stateful Variations and dynamism ??? Vasiliki Kalavri | Boston University 2020 35 Safety • Ensure resource availability: the host must have enough resources for all assigned operators • Ensure security
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Topic-based Pub/Sub • Events are grouped into topics which are identified by keywords. • Topics <—> Groups • Subscribing to a topic T can be viewed as becoming a member of a group T. • Publishing an event
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    load balanced over the consumer instances. If all the consumer instances have different consumer groups, then each record will be broadcast to all the consumer processes. Vasiliki Kalavri | Boston University
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • ad-hoc queries, data manipulation tasks • insertions, updates, deletions of single row or groups of rows Data Stream Management System • continuous queries • sequential data access, high-rate
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Aggregates (UDAs) Constructs that allow the definition of custom aggregations using three statement groups: • INITIALIZE: initialized local state. • ITERATE: update state based on new element and current
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    Time Window 2015 年阿里巴巴开始使用 Flink 并持续贡献社区 重构分布式架构 Client Dispatcher Job Manager Task Manager Resource Manager Cluster Manager Task Manager 1. Submit job 2. Start job 3. Request slots 4. Allocate
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    stabilize. • Requires a persistent input source. • Suitable for transient load increase. Scale resource allocation: • Addresses the case of increased load and additionally ensures no resources are
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Θ(ln n/ln ln n), with high probability ??? Vasiliki Kalavri | Boston University 2020 Dynamic resource allocation • Choose one among n workers • check the load of each worker and send the item to
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
FaulttolerancedemoreconfigurationCS591K1DataStreamProcessingandAnalyticsSpring2020监控ApacheFlink应用程序应用程序入门StreamingoptimizationsingestionpubsubsystemsIntroductiontoKafkaprocessingfundamentalslanguagesoperatorsemantics过去现在未来FlowcontrolloadsheddingSkewmitigation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩