积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Apache Flink(9)

语言

全部英语(8)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    20% 7 Vasiliki Kalavri | Boston University 2020 Grading Scheme (2) Final Project (50%): • A real-time monitoring and anomaly detection framework • To be implemented individually Deliverables • Kalavri | Boston University 2020 Final Project You will use Apache Flink and Kafka to build a real-time monitoring and anomaly detection framework for datacenters. Your framework will: • Detect “suspicious” processing important? Vasiliki Kalavri | Boston University 2020 By 2025, 30% of all data will be real-time data. By 2020, we will be able to store less than 15% of all data. 18 Vasiliki Kalavri | Boston
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    BY Name; Flink 在阿里的服务情况 集群规模 超万台 状态数据 PetaBytes 事件处理 十万亿/天 峰值能力 17亿/秒 Flink 的过去 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ 现在 批处理错误恢复(4) 批处理错误恢复(5) 插件化 Shuffle Manager 生态 Flink Hive Flink Zeppelin 中文社区 Flink 的现在 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ Shipping Flow-Control Async Call Auto Scale State Management Event Driven Flink 的未来 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    than being available in full before its processing begins. • Data streams are high-volume, real-time data that might be unbounded • we cannot store the entire stream in an accessible way • we have and Stan Zdonik. Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of real-time stream processing. SIGMOD Rec. 34, 4 (December 2005).
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    exchange data through an ATM network, each pair of endpoints first needs to establish a virtual circuit (VC) or connection. • CFC uses a credit system to signal the availability of buffer space from
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    input • e.g. joins, holistic aggregates • Compute on most recent events only • when providing real-time traffic information, you probably don't care about an accident that happened 2 hours ago • Recent
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operator shares a lock with an upstream operator. • Satisfy deadlines: for applications with real-time constraints or QoS latency constraints. Batching Process multiple data elements in a single batch
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    col("word")).count() 67 / 79 Flink 68 / 79 Flink ▶ Distributed data flow processing system ▶ Unified real-time stream and batch processing ▶ Process unbounded and bounded Data ▶ Design issues • Continuous
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    Python API for Apache Flink that allows you to build scalable batch and streaming workloads, such as real-time data processing pipelines, large-scale exploratory data analysis, Machine Learning (ML) pipelines
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    Python API for Apache Flink that allows you to build scalable batch and streaming workloads, such as real-time data processing pipelines, large-scale exploratory data analysis, Machine Learning (ML) pipelines
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
CourseintroductionCS591K1DataStreamProcessingandAnalyticsSpring2020ApacheFlink过去现在未来processingfundamentalsFlowcontrolloadsheddingWindowstriggersStreamingoptimizationsScalableSparkPy1.15Documentation1.16
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩