积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)Apache Flink(17)

语言

全部英语(15)中文(简体)(2)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2, 4), (1, 5, 3)) inputStream.keyBy(0).sum(1).print() 16 keyBy what’s the output for each key? Vasiliki Kalavri | Boston University 2020 coMap / coFlatMap val factors: DataStream[(String, Double)] options conf/flink-conf.yaml contains the configuration options as a collection of key-value pairs with format key:value Common options you might need to adjust: jobmanager.heap.size: JVM heap size A topic identifies a category of stream records stored in a Kafka cluster. 
 Records consist of a key, a value, and a timestamp. A producer publishes a stream of records to a Kafka topic and a consumer
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations to ensure result correctness resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations to ensure result correctness resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations to ensure result correctness
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • A log can be partitioned, so that each partition can be read and written independently of others • a topic is a set of partitions • Within each partition, every message carries an offset, a monotonically monotonically increasing sequence number • Within a partition, all messages are totally ordered but there is no ordering guarantee across partitions 28 29 Failure handling • The broker does not delays: If a message is slow to process, this delays processing of subsequent messages, as each partition is read by a single thread What would you use when priority is: - latency but not ordering?
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    ...................................................................................... 14 4.12.1 Key Metrics .......................................................................................... .................................................................................... 17 4.13.1.1 Key Metrics .......................................................................................... .......................................... 21 caolei – 监控Apache Flink应用程序(入门) – 3 4.13.2.1 Key Metrics ..........................................................................................
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    replicates a stream, commonly to be used as input to multiple downstream operators. • Group by / Partition Operators split a stream into sub-streams according to a function or the event contents. • one Pattern-Matching: a simpler approach SELECT ‘modified-pattern123’, X.CustomerId FROM webevents PARTITION BY CustomerId AS PATTERN (X Y Z) WHERE X.Event = ‘order’ AND Y.Event = ‘rebate’ Z.Event = ‘cancel’ AND Z.ItemID = Y.ItemID Partitions the stream into substreams according to a key A sequence of events that immediately follow one another AS PATTERN (X V* Y W* Z) • Match zero
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Keyed state is scoped to a key defined in the operator’s input records • Flink maintains one state instance per key value and partitions all records with the same key to the operator task that maintains maintains the state for this key • State access is automatically scoped to the key of the current record so that all records with the same key access the same state State management in Apache Flink Vasiliki Kalavri | Boston University 2020 RocksDB 10 RocksDB is an LSM-tree storage engine with key/value interface, where keys and values are arbitrary byte streams. https://rocksdb.org/ https://www
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream of (K, Long) pairs where the value of each key is its frequency in each RDD of pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream of (K, Long) pairs where the value of each key is its frequency in each RDD of pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream of (K, Long) pairs where the value of each key is its frequency in each RDD of
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Flink如何实时分析Iceberg数据湖的CDC数据

    并DMerge-On-Rea- Mkh取 支持I量P取便于进一 步数RTransform I量h Apache Iceberg asic Data Metadata Database Table Partition Spec Manifest File TableMetadata Snapshot Current Table Version Pointer Apac2e Ice-er1 Bas3c cHFck_ePenON :ET =.4UE: (... TX6.3: /E4ETE 1R75 cHFck_ePenON W2ERE LMFIAMy_key - XX TX6.4: U8/.TE cHFck_ePenON :ET =.4UE:(... W2ERE LMFIAMy_key - XX :nALNEoO 5AnFDeNO /AOA//eHeOe 1FHeN 36:ERT 134E: /E4ETE
    0 码力 | 36 页 | 781.69 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations to ensure result correctness migration if the state is large • Progressive • move state to be migrated in smaller pieces, e.g. key-by-key • can be used to interleave state transfer with processing • migration duration might increase
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    1. Load: read the graph from disk and partition it in memory 10 ??? Vasiliki Kalavri | Boston University 2020 1. Load: read the graph from disk and partition it in memory 2. Compute: read and mutate from disk and partition it in memory 2. Compute: read and mutate the graph state 11 ??? Vasiliki Kalavri | Boston University 2020 1. Load: read the graph from disk and partition it in memory 2 2020 Distributed Stream Connected Components 36 1. partition the edge stream, e.g. by source Id 2. maintain a disjoint set in each partition 3. periodically merge the partial disjoint sets into
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
IntroductiontoApacheFlinkandKafkaCS591K1DataStreamProcessingAnalyticsSpring2020Faulttolerancedemoreconfigurationingestionpubsubsystems监控应用程序应用程序入门StreaminglanguagesoperatorsemanticsStatemanagementScalableSpark如何实时分析Iceberg数据CDCElasticitystatemigrationPartGraphstreamingalgorithms
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩