积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)Apache Flink(19)

语言

全部英语(18)中文(简体)(1)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 9 Identify the most efficient way to execute a query • There may exist several ways to execute a computation • query plans, e.g. order of operators • scheduling and placement decisions • How can we estimate the cost of different strategies? • before execution or during runtime Query optimization (I) ??? Vasiliki Kalavri | Boston University 2020 10 Optimization strategies • enumerate • decrease latency, increase throughput • minimize monetary costs (if running in the cloud) Query optimization (II) ??? Vasiliki Kalavri | Boston University 2020 Cost-based optimization 11 Parsed
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    5 ??? Vasiliki Kalavri | Boston University 2020 Load shedding as an optimization problem N: query network I: set of input streams with known arrival rates C: system processing capacity H: headroom continuously monitors input rates or other system metrics and can access information about the running query plan • It detects overload and decides what actions to take in order to maintain acceptable latency Fast approximate answers … S1 S2 Sr Input Manager Scheduler QoS Monitor Load Shedder Query Execution Engine Qm Q2 Q1 Ad-hoc or continuous queries Input streams … ??? Vasiliki Kalavri
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    single-pass Updates arbitrary append-only Update rates relatively low high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively high low • Derived stream: produced by a continuous query and its operators, e.g. total traffic from a source every minute ins_r(P:i) = insert(i, {j | j ∈ ins_r(P) ^ j.A ≠ i.A}). 28 Vasiliki Kalavri | Boston University 2020 Query processing challenges • Memory requirements: we cannot store the whole stream history. • Data rate:
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    subscription • A logical producer/consumer can be implemented by multiple physical tasks running in parallel • Ιf a producer generates events with high rate, we can balance the load by spawning several Communication patterns (II) Fan-out Several logical consumers (possibly implemented by several parallel physical processes) can subscribe to the same topic, so that the message broker delivers messages search while MBs only offer topic-based subscription. • DB query results depend on a snapshot and clients are not notified if their query result changes later. 13 Message delivery and ordering Acknowledgements
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    approach? Vasiliki Kalavri | Boston University 2020 • Copy, checkpoint, restore, merge, split, query, subscribe, … State operations and types 4 Consider you are designing a state interface. What to an operator task, i.e. records processed by the same parallel task have access to the same state • It cannot be accessed by other parallel tasks of the same or different operators Keyed state is maintains one state instance. • The keyed state instances of a function are distributed across all parallel tasks of the function’s operator. Keyed state can only be used by functions that are applied
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Restart it with an adjusted parallelism • The state is automatically redistributed to the new set of parallel tasks • For exactly-once results, we need to prevent a checkpoint to complete after the savepoint When scaling stateful operators, state needs to be repartitioned and assigned to more or fewer parallel tasks • Scaling different types of state • Operators with keyed state are scaled by repartitioning Existing state for a particular key and all future events with this key must be routed to the same parallel instance • Some kind of hashing is typically used • Maintaining routing tables or an index for
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    5 1 4 ??? Vasiliki Kalavri | Boston University 2020 59 • Similar challenges exist for a data-parallel implementation of spanners • How to represent the spanner? As an adjacency list? which state every incoming edge? Can we compute the distances in separate partitions and then merge them? Data-parallel streaming spanners on Flink? ??? Vasiliki Kalavri | Boston University 2020 60 • McGregor, Andrew
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    using env.setParallelism() in your application. taskmanager.numberOfTaskSlots: The number of parallel operator or user function instances that a single TaskManager can run. This value is typically
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    applied on a keyed or a non-keyed stream: • Window operators on keyed windows are evaluated in parallel • Non-keyed windows are processed in a single thread To create a window operator, you need to
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Active Standby 17 • The secondary receives tuples from upstream and processes them in parallel with the primary but it doesn’t output results • Watermarks are used to identify duplicate
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020FlowcontrolloadsheddingprocessingfundamentalsingestionpubsubsystemsStatemanagementFaulttolerancedemoreconfigurationGraphstreamingalgorithmsIntroductiontoApacheFlinkKafkaWindowstriggersHighavailabilityrecoverysemanticsguarantees
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩