积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)Apache Flink(10)

语言

全部英语(9)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operators • scheduling and placement decisions • different algorithms, e.g. hash-based vs. broadcast join • What does performance depend on? • input data, intermediate data • operator properties • applying B and then A. • holds if both operators are stateless Re-ordering split and merge split merge merge split merge split When might this be beneficial? ??? Vasiliki Kalavri | Boston University 2020 operations are commutative • theta-join operations are commutative • natural joins are associative • Move projections early to reduce data item size • Pick join orderings to minimize the size of intermediate
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    are represented in graphical representation using boxes and arrows Tumble Window Tumble Window Join(S1.A = S2.A) S1 S2 7 Vasiliki Kalavri | Boston University 2020 Composite subscription pattern was active 17 Vasiliki Kalavri | Boston University 2020 Flow Management Operators (I) • Join operators merge two streams by matching elements satisfying a condition • commonly applied on windows
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    of (K, Long) pairs where the value of each key is its frequency within a sliding window. 26 / 79 Join Operation (1/3) ▶ Stream-stream joins ▶ In each batch interval, the RDD generated by stream1 will String] = ... val stream2: DStream[String, String] = ... val joinedStream = stream1.join(stream2) 27 / 79 Join Operation (2/3) ▶ Stream-stream joins ▶ Joins over windows of the streams. val windowedStream1 val windowedStream2 = stream2.window(Minutes(1)) val joinedStream = windowedStream1.join(windowedStream2) 28 / 79 Join Operation (3/3) ▶ Stream-dataset joins val dataset: RDD[String, String] = ... val
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    accumulator and return it. OUT getResult(ACC accumulator); // merge two accumulators and return the result. ACC merge(ACC a, ACC b); } 16 AggregateFunction interface Vasiliki Kalavri | override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) } override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = { (acc1._1, acc1._2 + acc2._2 type Accumulator type Output type Initialization Accumulate one element Compute the result Merge two partial accumulators Vasiliki Kalavri | Boston University 2020 Use the ProcessWindowFunction
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the 1st time, create a component with ID the min of the vertex IDs • if in different components, merge them and update the component ID to the min of the component IDs • if only one of the endpoints the edge stream, e.g. by source Id 2. maintain a disjoint set in each partition 3. periodically merge the partial disjoint sets into a global one ??? Vasiliki Kalavri | Boston University 2020 Connected do that for every incoming edge? Can we compute the distances in separate partitions and then merge them? Data-parallel streaming spanners on Flink? ??? Vasiliki Kalavri | Boston University 2020
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    disadvantages of each approach? Vasiliki Kalavri | Boston University 2020 • Copy, checkpoint, restore, merge, split, query, subscribe, … State operations and types 4 Consider you are designing a state interface Iterator/RangeScan: seek to a specified key and then scan one key at a time from that point (keys are sorted) • Merge: a lazy read-modify-write RocksDB 11 Vasiliki Kalavri | Boston University 2020 In conf/flink.conf
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operator produce per record in its input? • map: 1 in 1 out • filter: 1 in, 1 or 0 out • flatMap, join: 1 in 0, 1, or more out • Cost: how many records can an operator process in a unit of time? #records_in
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Flink如何实时分析Iceberg数据湖的CDC数据

    。 4、不支持增量SF。 h点 直接D入CDC到Hi2+分析 、流程能E作 2、Hi2+存量数据不受增量数据H响。 方案评估 优点 、数据不是CR写入; 2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。 缺点 SCaDk + )=AFa IL()(数据 MER,E .NTO GE=DE US.N, chan>=E ON
    0 码力 | 36 页 | 781.69 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    TableEnvironment. It is not possible to combine tables from different TableEnvironments in same query, e.g., to join or union them. Firstly, you can create a Table from a Python List Object [3]: table = table_env
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    TableEnvironment. It is not possible to combine tables from different TableEnvironments in same query, e.g., to join or union them. Firstly, you can create a Table from a Python List Object [3]: table = table_env
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020languagesoperatorsemanticsScalableSparkFlinkWindowstriggersGraphstreamingalgorithmsStatemanagementFlowcontrolloadshedding如何实时分析Iceberg数据CDCPy1.15Documentation1.16
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩