积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)Apache Flink(17)

语言

全部英语(17)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Window operators 2 Vasiliki Kalavri | Boston University 2020 object MaxSensorReadings { def main(args: Array[String]) {
 val env = StreamExecutionEnvironment.getExecutionEnvironment
 val StreamExecutionEnvironment: Configuring a time characteristic 4 object AverageSensorReadings { def main(args: Array[String]) { // set up the streaming execution environment val env = StreamExecutionEnvironment reduce/aggregate/process(...) // specify the window function // define a non-keyed window-all operator stream .windowAll(...) // specify the window assigner .reduce/aggregate/process(...) // specify the
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    translates to operations on the underlying RDDs. 9 / 79 StreamingContext ▶ StreamingContext is the main entry point of all Spark Streaming functionality. ▶ The second parameter, Seconds(1), represents val ssc = new StreamingContext(sc, Seconds(1)) 10 / 79 StreamingContext ▶ StreamingContext is the main entry point of all Spark Streaming functionality. ▶ The second parameter, Seconds(1), represents Applies a function to each RDD generated from the stream. • The function is executed in the driver process. 31 / 79 Output Operations (2/4) ▶ What’s wrong with this code? ▶ This requires the connection
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    that might be unbounded • we cannot store the entire stream in an accessible way • we have to process stream elements on-the-fly using limited memory 2 Vasiliki Kalavri | Boston University 2020 Properties ETL process complex fast and light-weight ETL: Extract-Transform-Load
 e.g. unzipping compressed files, data cleaning and standardization 6 Vasiliki Kalavri | Boston University 2020 1. Process events or more base and/or derived streams • Each query (operator) maintains its own state • Queries process raw streams, not synopses => results are typically exact • Challenges: computation progress,
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1.2 O2: Java gateway process exited before sending its port number . . . . . . . . . . . 22 1.3.2 Usage issues . . . . . . . use. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -pyclientexec /pat meet. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -Dyarn.ship-files=/path/to/shipfiles
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1.2 O2: Java gateway process exited before sending its port number . . . . . . . . . . . 22 1.3.2 Usage issues . . . . . . . use. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -pyclientexec /pat meet. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.name= \ -Dyarn.ship-files=/path/to/shipfiles
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    .window() .reduce|aggregate|process() stream. .windowAll() .reduce|aggregate|process() ◦TumblingEventTimeWindows.of(Time input = ... input .keyBy(“key”) .window(TumblingEventTimeWindows.of(Time.minutes(1))) .process(new MyWastefulMax()); public static class MyWastefulMax extends ProcessWindowFunction< SensorReading key type TimeWindow> { // window type @Override public void process( String key, Context context, Iterable events, Collector
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    consumers can process events. 2 ??? Vasiliki Kalavri | Boston University 2020 Keeping up with the producers • Producers can generate events in a higher rate than the rate consumers can process events. with the producers • Producers can generate events in a higher rate than the rate consumers can process events. • What happens if consumers cannot keep up with the event rate? • drop messages 2 ?? with the producers • Producers can generate events in a higher rate than the rate consumers can process events. • What happens if consumers cannot keep up with the event rate? • drop messages • buffer
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    satisfies causality: • An event is pre-snapshot if it occurs before the local snapshot on a process, otherwise it is post- snapshot • If event A happens causally before B and B is pre-snapshot, duplicate messages • Strongly connected execution graph: each process can reach every other process in the system • Single initiating process 18 The Chandy-Lamport Algorithm A snapshot algorithm that interfere with processing • processing and messages do not stop • Each process cast locally record its own state • Any process can initiate the algorithm 19 The Chandy-Lamport Algorithm ??? Vasiliki
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    re-ordering of messages • Re-delivery complicates stream processing and fault-tolerance • might process a message out-of-order or twice 14 How can we avoid this? 15 Publish/Subscribe Systems publisher parallelism: the number of the topic's partitions • Processing delays: If a message is slow to process, this delays processing of subsequent messages, as each partition is read by a single thread throughput and ordering? 31 How long to keep the log? • Log compaction: a (usually background) process that searches for log records with the same key and merges the records by only keeping the most
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    > cc = edgeStream
 .keyBy(0)
 .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))
 .process(new UpdateDisjointSet()) // ephemeral partial state
 .flatMap(new Merger()) // global state
 > cc = edgeStream
 .keyBy(0)
 .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))
 .process(new UpdateDisjointSet()) // ephemeral partial state
 .flatMap(new Merger()) // global state
 > cc = edgeStream
 .keyBy(0)
 .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))
 .process(new UpdateDisjointSet()) // ephemeral partial state
 .flatMap(new Merger()) // global state

    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
WindowsandtriggersCS591K1DataStreamProcessingAnalyticsSpring2020ScalableSparkStreamingFlinkprocessingfundamentalsPy1.15Documentation1.16inApacheFlowcontrolloadsheddingExactlyoncefaulttoleranceingestionpubsubsystemsGraphstreamingalgorithms
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩