积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)Apache Flink(17)

语言

全部英语(16)中文(简体)(1)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    apache.spark.streaming._ // Create a local StreamingContext with two working threads and batch interval of 1 second. val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount") val awaitTermination() 40 / 79 Word Count in Spark Streaming (6/6) val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount") val ssc = new StreamingContext(conf, Seconds(1)) val lines = start() ssc.awaitTermination() 41 / 79 Word Count with Window val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount") val ssc = new StreamingContext(conf, Seconds(1)) val lines =
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2. store in local buffer and possibly update state 3. produce output 5 mi mo Vasiliki Kalavri | Boston University 2020 What is a failure? op 1. receive an event 2. store in local buffer and possibly Vasiliki Kalavri | Boston University 2020 What is a failure? op 1. receive an event 2. store in local buffer and possibly update state 3. produce output 5 mi mo Was mi fully processed? Was mo delivered Vasiliki Kalavri | Boston University 2020 What is a failure? op 1. receive an event 2. store in local buffer and possibly update state 3. produce output What can go wrong: • lost events • duplicate
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 All data maintained by a task and used to compute results: a local or instance variable that is accessed by a task’s business logic Operator state is scoped to an and maintained. State backends are responsible for: • local state management • checkpointing state to remote and persistent storage, e.g. a distributed filesystem or a database system • Available Stores state on TaskManager’s heap but checkpoints it to a remote file system • In-memory speed for local accesses and fault tolerance • Limited to TaskManager’s memory and might suffer from GC pauses Which
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    in-flight data to be completely processed 3. Copy the state of each task to a remote, persistent storage 4. Wait until all tasks have finished their copies 5. Resume processing and stream ingestion consistency A consistent cut satisfies causality: • An event is pre-snapshot if it occurs before the local snapshot on a process, otherwise it is post- snapshot • If event A happens causally before B and University 2020 Completing a snapshot When all processes have received a marker and recorded their local state and ll processes have received markers on all incoming channels and have recorded all channel
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Flink programs are defined in regular Scala/Java methods Set up the execution environment: local, cluster, I/O, time semantics, parallelism, … Example: Sensor Readings 9 Vasiliki Kalavri | Boston distributed and fault-tolerant publish-subscribe messaging system and serves as the ingestion, storage, and messaging layer for large production streaming pipelines. Kafka is commonly deployed on a
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    sources. • To ensure no data loss, a persistent input message queue, such as Kafka, and enough storage is required. 21 o1 src o2 back-pressure target: 40 rec/s 10 rec/s 100 rec/s ??? Vasiliki Kalavri they have been consumed and can be re-used. ??? Vasiliki Kalavri | Boston University 2020 24 Local exchange: If both producer and consumer run on the same node the buffer is recycled as soon as it
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    JobGraph and all required metadata, such as the application’s JAR file, into a remote persistent storage system • Zookeeper also holds state handles and checkpoint locations 5 JobManager failures following steps: 1. It requests the storage locations from ZooKeeper to fetch the JobGraph, the JAR file, and the state handles of the last checkpoint from remote storage. 2. It requests processing slots
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Message queues • Asynchronous point-to-point communication • Lightweight buffer for temporary storage • Messages stored on the queue until they are processed and deleted • transactional, timing, and explicitly deleted while MBs delete messages once consumed. • Use a database for long-term data storage! • MBs assume a small working set. If consumers are slow, throughput might degrade. • DBs support
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Netbeans with appropriate plugins installed. • gsutil for accessing datasets in Google Cloud Storage. More details: vasia.github.io/dspa20/exercises.html 14 Vasiliki Kalavri | Boston University Continuously arriving, possibly unbounded data f read write Complete data accessible in persistent storage 30 Vasiliki Kalavri | Boston University 2020 Consider a set of 1000 sensors deployed in different
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1.2 Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1.3 Standalone which contains its own Python executable files and the installed Python packages. It is useful for local development to create a standalone Python environment and also useful when deploying a PyFlink job previous page) # -rw-r--r-- 1 dianfu staff 45K 10 18 20:54 flink-dianfu-python-B-7174MD6R-1908. ˓→local.log Besides, you could also check if the files of the PyFlink package are consistent. It may happen
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinkHighavailabilityrecoverysemanticsguaranteesCS591K1DataAnalyticsSpring2020StatemanagementExactlyoncefaulttoleranceinApacheIntroductiontoKafkaFlowcontrolloadsheddingFaultdemoreconfigurationingestionpubsubsystemsCourseintroductionPy1.15Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩