积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)Apache Flink(22)

语言

全部英语(20)中文(简体)(2)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    “Inside job” you might also like “The Bourne Identity” What’s the cheapest way to reach Zurich from London through Berlin? These are the top-10 relevant results for the search term “graph” ??? Vasiliki events: A purchase, a movie rating, a like on an online post, a bitcoin transaction, a packet routed from a source to destination Vertex events: A new product, a new movie, a user ??? Vasiliki Kalavri University 2020 1. Load: read the graph from disk and partition it in memory 10 ??? Vasiliki Kalavri | Boston University 2020 1. Load: read the graph from disk and partition it in memory 2. Compute:
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    of A by increasing index. This can model time-series data streams: • a sequence of measurements from a temperature sensor • the volume of NASDAQ stock trades over time This model poses a severe limitation update (k, c[j]), can be either positive or negative. Events can be continuously inserted and deleted from the stream. It can model fully dynamic situations: • Monitoring active IP network connections is size> • Derived stream: produced by a continuous query and its operators, e.g. total traffic from a source every minute packet generation time bytes in packet total
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 15 Safety • Attribute availability: the set of attributes B reads from must be disjoint from the set of attributes A writes to. • Commutativity: the results of applying A and then Boston University 2020 18 Safety • attribute availability: the set of attributes B reads from must be disjoint from the set of attributes A writes to. • commutativity: the results of applying A and then systems that build one dataflow graph for several queries • when applications analyze data streams from a small set of sources • Operator elimination • remove a no-op, e.g. a projection that keeps all
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    Installation 1.1.1.1 Preparation This page shows you how to install PyFlink using pip, conda, installing from the source, etc. Python Version Supported PyFlink Version Python Version Supported PyFlink 1.16 installed using PyPI as following: python3 -m pip install apache-flink Installing from Source To install PyFlink from source, you could refer to Build PyFlink. Check the installed package You could (continues on next page) 1.1. Getting Started 5 pyflink-docs, Release release-1.15 (continued from previous page) # -rw-r--r-- 1 dianfu staff 45K 10 18 20:54 flink-dianfu-python-B-7174MD6R-1908.
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    Installation 1.1.1.1 Preparation This page shows you how to install PyFlink using pip, conda, installing from the source, etc. Python Version Supported PyFlink Version Python Version Supported PyFlink 1.16 installed using PyPI as following: python3 -m pip install apache-flink Installing from Source To install PyFlink from source, you could refer to Build PyFlink. Check the installed package You could (continues on next page) 1.1. Getting Started 5 pyflink-docs, Release release-1.16 (continued from previous page) # -rw-r--r-- 1 dianfu staff 45K 10 18 20:54 flink-dianfu-python-B-7174MD6R-1908.
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Guest Lectures • Learn about real-world use-cases of stream processing in industry • Learn from experts with decades of hands-on experience in building and using distributed systems and data management it during office hours. Vasiliki Kalavri | Boston University 2020 Dataset A subset of traces from a large (12.5k machines) Google cluster • https://github.com/google/cluster-data/blob/master/ ClusterData2011_2 setup. • If you are a Windows user, you are advised to use Windows subsystem for Linux (WSL), Cygwin, or a Linux virtual machine to run Flink in a UNIX environment. • A Java 8.x installation. To
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    setAppName(appName).setMaster(master) val ssc = new StreamingContext(conf, Seconds(1)) ▶ It can also be created from an existing SparkContext object. val sc = ... // existing SparkContext val ssc = new StreamingContext(sc setAppName(appName).setMaster(master) val ssc = new StreamingContext(conf, Seconds(1)) ▶ It can also be created from an existing SparkContext object. val sc = ... // existing SparkContext val ssc = new StreamingContext(sc Input Operations ▶ Every input DStream is associated with a Receiver object. • It receives the data from a source and stores it in Spark’s memory for processing. ▶ Three categories of streaming sources:
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    input stream events on type, content, timing constraints. • Actions define how to produce results from the matches. Language Types 3 Vasiliki Kalavri | Boston University 2020 Three classes of operators: tables Declarative language: CQL 4 Vasiliki Kalavri | Boston University 2020 Select IStream(*) From S1 [Rows 5], S2 [Rows 10] Where S1.A = S2.A Last 5 elements of stream S1 and last 10 elements of Example Select IStream(S1.A, S2.B) From S1 [Rows 50], S2 [Rows 50] (A & B) || (C & D) Explicit conjunction and disjunction Implicit conjunction in CQL Consider events from stream S1 and stream S2 11
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    sensors Databases and KV stores Message queues and brokers Where do stream processors read data from? 2 Challenges • can be distributed • out-of-sync sources may produce out-of-order streams • Message broker: a system that connects event producers with event consumers. • It receives messages from the producers and pushes them to the consumers. • A TCP connection is a simple messaging system responsible for message durability • Asynchronous communication, i.e. producer only needs to receive ack from broker 9 Communication patterns (I) Load balancing or shared subscription • A logical producer/consumer
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 • To recover from failures, the system needs to • restart failed processes • restart the application and recover its state 2 Checkpointing guards the state from failures, but what about following steps: 1. It requests the storage locations from ZooKeeper to fetch the JobGraph, the JAR file, and the state handles of the last checkpoint from remote storage. 2. It requests processing slots to complete after the savepoint! • Use the integrated savepoint-and-cancel command 15 Scaling from a Savepoint ??? Vasiliki Kalavri | Boston University 2020 16 ??? Vasiliki Kalavri | Boston University
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
GraphstreamingalgorithmsCS591K1DataStreamProcessingandAnalyticsSpring2020processingfundamentalsStreamingoptimizationsPyFlink1.15Documentation1.16CourseintroductionScalableSparklanguagesoperatorsemanticsingestionpubsubsystemsFaulttolerancedemoreconfiguration
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩