积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)Apache Flink(14)

语言

全部英语(13)中文(简体)(1)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.045 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.2.1 O1: How to prepare Python Virtual Environment . . . . . . . . . . . . . . . . . . . 24 1.3.2.2 O2: How to add Python Files . . . . . . . . --version Create a Python virtual environment Virtual environment gives you the ability to isolate the Python dependencies of different projects by creating a separate environment for each project. It is a directory standalone Python environment and also useful when deploying a PyFlink job to production when there are massive Python dependencies. It’s supported to use Python virtual environment in your PyFlink jobs
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.2.1 O1: How to prepare Python Virtual Environment . . . . . . . . . . . . . . . . . . . 24 1.3.2.2 O2: How to add Python Files . . . . . . . . --version Create a Python virtual environment Virtual environment gives you the ability to isolate the Python dependencies of different projects by creating a separate environment for each project. It is a directory standalone Python environment and also useful when deploying a PyFlink job to production when there are massive Python dependencies. It’s supported to use Python virtual environment in your PyFlink jobs
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    f[j] = ci,j return min(f[1], f[2], …, f[p]) ??? Vasiliki Kalavri | Boston University 2020 24 Computing top-k ??? Vasiliki Kalavri | Boston University 2020 24 • Additional to the array of counter, we elements seen so far • a heap X* of up to k potential heavy hitters and their frequency estimations Computing top-k ??? Vasiliki Kalavri | Boston University 2020 24 • Additional to the array of counter, we frequency estimations • We use a frequency threshold f*=N/k to decide whether an element is popular Computing top-k ??? Vasiliki Kalavri | Boston University 2020 24 • Additional to the array of counter, we
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    discard by relying on the notion of a window-based concept drift. • The metric is defined by computing a similarity metric across windows. 18 ??? Vasiliki Kalavri | Boston University 2020 How many
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 53 • Martin Hirzel et. al. A Catalog of Stream Processing Optimizations. (ACM Computing Surveys 2014). • Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive query processing
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Synopses for massive data streams • Maintaining synopses is often the only means of providing interactive response times when exploring massive datasets or high speed data streams. • Queries are executed
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    -algorithm/ • A video lecture on global snapshots: https://www.coursera.org/lecture/ cloud-computing/1-2-global-snapshot-algorithm-hndGi 52
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    11 Challenges of reconfiguration ??? Vasiliki Kalavri | Boston University 2020 12 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt? 12 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler Control: When and how much to adapt? Mechanism: How to apply the re-configuration? 12 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Windows subsystem for Linux (WSL), Cygwin, or a Linux virtual machine to run Flink in a UNIX environment. • A Java 8.x installation. To develop Flink applications and use its DataStream API in Java
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    temperature”)
 }
 } Flink programs are defined in regular Scala/Java methods Set up the execution environment: local, cluster, I/O, time semantics, parallelism, … Example: Sensor Readings 9 Vasiliki
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020FlowcontrolloadsheddingStreamingoptimizationsFilteringsamplingstreamsExactlyoncefaulttoleranceinApacheFaultdemoreconfigurationCourseintroductionIntroductiontoKafka
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩